- Browse by Subject
Browsing by Subject "Surface Properties"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item A Comparison of Frictional Forces During Simulated Cuspid Retraction on a Continuous Edgewise Archwire(1982) Allai, W. Wesley; Garner, LaForrest D.; Sondhi, Anoop; Shanks, James C.; Swartz, Marjorie L.; Barton, PaulThis investigation was designed to compare the force (grams) required to overcome a simulated cuspid retraction assembly capable of three dimensional control during the retraction process. It was hypothesized that a significant difference in the mean retraction values exists between the newer orthodontic alloys of Nitinol, Beta-Titanium, as well as Stainless Steel. One hundred eighty bracket and archwire combinations were examined as follows: Sample # Wire Cross-section Wire Material 30 .016”x.022” Stainless Steel 30 .017”x.025” ” 30 .016”x.022” Nitinol 30 .017”x.025” ” 30 .016”x.022 Beta-Titanium (TMA) 30 .017”x.025” ” A statistically significant difference was shown to exist between all six groups examined regarding the variables of wire size and wire material. The statistical analysis revealed that increasing rectangular archwire cross-sectional size from .016"x.022" to .017"x.025” rectangular wire when simulating canine retraction using an .018" slotted Lewis bracket will lead to significantly greater functional forces. The analysis of wire materials indicated that a significant difference (p=.01) exists between rectangular Beta-Titanium (TMA), Nitinol, and stainless steel during simulated cuspid retraction utilizing a narrow .018" Lewis bracket ligated with A-lastik ligatures. The least frictional force was observed with the .016"x.022" stainless steel test cells. The largest frictional force was found in the .017”'x.025" Beta-Titanium retraction specimens. Nitinol revealed force data intermediate between stainless steel and Beta-Titanium. The maximum resistance assembly developed 2.3 times the minimum frictional force observed. The mean grams of frictional force within these test cells ranged from 55.03 grams for the .016"x.022" retraction assembly to 132.68 grams for the .017"x.025" Beta-Titanium assembly. A topographical scanning electron microscope survey of the brackets and archwires utilized was included to provide qualitative insights into the quantitative results described.Item A comparison of hardness and abrasion resistance of two sealant materials after polymerization from different distances by different light sources(2008) Ritchie, Craig D.; Dean, Jeffrey A.; Avery, David R.; Sanders, Brian J.; Weddell, James A. (James Arthur), 1949-; Platt, Jeffrey A., 1958-; Tomlin, Angela; Moore, B. KeithBACKGROUND The efficacy of sealants to aid in the prevention of pit and fissure caries is well documented. In order for the sealants to be effective, they must be placed properly and retained for as long as possible. Clinicians must be aware that the proper placement of sealants is technique-sensitive and must be well controlled in order to achieve the best results. This study aims to determine if certain variables have an effect on curing of the sealant material to a degree that would compromise its integrity, strength, and longevity. METHODS AND MATERIALS Two commonly used sealant materials Ultraseal XT (Ultradent Products Inc., South Jordan, UT) and Delton (Dentsply International, Woodbridge, Ontario, Canada) were chosen and tested for microhardness and abrasion resistance after they were polymerized. This study did not focus on the materials themselves, but rather the technique by which they were polymerized and what effect this had on the materials. Three separate light sources, a traditional halogen light (QHL 75, Dentsply International, Woodbridge, Ontario, Canada), and two newer LED lights (Ultralume LED, Ultradent Products Inc., South Jordan, UT; and 3M Freelight LED, 3M Corp, St Paul, MN) were used in this study. The materials were then cured with each light at each of three different distances: contact (0.5 mm), 2 mm, and 10 mm. The effects of light source variation and distance from the material at the time of polymerization was then evaluated for any significance to sealant placement technique. Specimens were tested for each variable combination of sealant material, light source, and distance between the two while curing. Six samples were tested for each variable grouping for abrasion resistance, and four separate san1ples were tested fron1 the san1e grouping for Knoop hardness. The results were analyzed for significance to determine if certain techniques are or could be beneficial or damaging to the quality of care provided by today's practitioners. RESULTS It was found that materials and light sources varied in combination and with different techniques (e.g., distance). In general, the top surface polymerized best when cured at a distance of 2 mm to 10 mm, while the bottom surface polymerized best at a distance of 0.5 mm. The halogen light consistently outperformed the two LED lights, with the 3M LED consistently producing the worst results. CONCLUSIONS The halogen curing light used in this study outperformed the LED lights in almost every category, despite the LED light manufacturer's claims of equality. For more reliable polymerization, the halogen light should be used. SIGNIFICANCE The practitioner must be aware of the material that he/she is using and how the chosen light source polymerizes that material. Manufacturers' claims and recommendations cannot be trusted to accurately produce the best results with every product on the market today, sometimes not even with the manufacturers' own products. It is crucial for practitioners to be well versed and knowledgeable about the products that they use, based on current research and not manufacturers' claims.Item Curing Front Shape and Velocity in Cylindrical Bulk-Filled Light-Cured Resin Composite(2001) Wright, Chad M.; Katona, Thomas R.; Baldwin, James J.; Shanks, James C.; Chen, Jie; Moore, B. KeithClinical failures of resin composite dental restorations are common phenomena. Such failures occur in part because of the polymerization shrinkage inherent to methacrylate-based materials. Numerous efforts have been attempted to reduce the deleterious effects of polymerization shrinkage. Despite such efforts, it appears that no simple solution to the problem exists. To effectively improve bonding methods, more information must be known about the polymerization process itself. By using the Finite Element Method (FEM), an accurate computer simulation model of the polymerization process may be created. Such a model may allow researchers to test the effects of alternative restorative and bonding techniques without actual in vitro experiments. To create an accurate computer model, much information about the transient events present during the curing process has yet to be obtained. In this non-clinical, data-gathering study, we: 1) verified that the shape of the curing front within a light-cured resin composite model is indeed convex, 2) determined that the curing front shape changes with depth of cure, and 3) measured the velocity of the curing front as it relates to curing light distance. Each of these observations and measurements has yielded information vital to the subsequent development of a resin composite polymerization model. It is anticipated that necessary data regarding other variables or aspects of the polymerization process will be obtained in subsequent research projects.Item The effect of full-contour Y-TZP ceramic surface roughness on the wear of bovine enamel and synthetic hydroxyapatite : an in-vitro study(2011) Sabrah, Alaá Hussein Aref, 1984-; Bottino, Marco C.; Lund, Melvin R., 1922-; Cochran, Michael A. (Michael Alan), 1944-; Hara, Anderson T.; Cook, Norman Blaine, 1954-THE EFFECT OF FULL-CONTOUR Y-TZP CERAMIC SURFACE ROUGHNESS ON THE WEAR OF BOVINE ENAMEL AND SYNTHETIC HYDROXYAPATITE: AN IN-VITRO STUDY by Alaa Hussein Aref Sabrah Indiana University School of Dentistry Indianapolis, Indiana Full-contour yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) restorations have been advocated recently in clinical situations where occlusal/palatal space is limited, or to withstand parafunctional activities. The objectives of this in-vitro study were to investigate the effects of different polishing techniques on the surface roughness of Y-TZP (Ardent Dental, Inc.) and to investigate the effects of different polishing techniques on the wear behavior of synthetic hydroxyapatite (HA) and bovine enamel. An in-vitro study was conducted by fabrication of 48 Y-TZP sliders (diameter = 2 mm × 1.5 mm in height) using CAD/CAM technique; then the samples were embedded in acrylic resin using brass holders. Samples were then randomly allocated into four groups according to the finishing/polishing procedure: G1-as-machined (n = 8), G2- glazed (n = 16), G3-diamond bur-finishing (Brasseler, USA) (n = 8) and G4- G3+OptraFine polishing kit (Ivoclar-Vivadent) (n = 16). Thirty-two sintered HA disks (diameter = 11 mm × 2.9 mm in height) and 16 bovine enamel samples with a minimum surface area of 64 mm2 were mounted in brass holders. Baseline surface roughness (Ra and Rq, in μm) were recorded using a non-contact profilometer (Proscan 2000) for all the samples. A two-body pin-on-disk wear test was performed for 25,000 cycles at 1.2 Hz in which the four zirconia groups were tested against HA, and only G2-glazed and G4- G3+OptraFine polishing kit (Ivoclar-Vivadent) were tested against bovine enamel. Vertical substance loss (μm) and volume loss (mm3) of HA were measured (Proscan). Zirconia height loss was measured using a digital micrometer. One-way ANOVA was used for statistical analysis. The results indicated that surface roughness measurements showed significant differences among the surface treatments with G1 (Ra = 0.84, Rq = 1.13 μm) and G3 (Ra = 0.89, Rq = 1.2 μm) being the roughest, and G2 (Ra = 0.42, Rq = 0.63 μm) the smoothest. The glazed group showed the highest vertical loss (35.39 μm) suggesting wear of the glaze layer, while the polished group showed the least vertical loss (6.61 μm). HA antagonist volume loss and vertical height loss for groups (G1, G2 and G3) were similar, while polished group (1.3 mm3, 14.7 μm) showed significant lower (p = 0.0001) values. Antagonist height loss and antagonist volume loss were significantly higher for bovine antagonist than for HA antagonist (197.6 μm/116.2 μm, and 28.5 mm3/17.7 mm3 for bovine against glazed/polished zirconia sliders, respectively) (p < 0.0001). From the results it can be concluded that glazed zirconia provided an initially smooth surface, but a significant increased antagonist wear compared with the polished surface was seen. Bovine enamel showed higher wear compared with HA, which suggested that more studies should be performed to validate the use of bovine enamel as a substitute for human enamel in wear studies.Item Effect of full-contour Y-TZP zirconia surface roughness on wear of glass-based ceramics(2011) Luangruangrong, Palika, 1983-; Bottino, Marco C.; Hara, Anderson T.; Cochran, Michael A.; Cho, Sopanis D.; Cook, N. BlaineThe use of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), normally employed as a framework for all-ceramic restorations, has now started to be used without any veneering ceramics in patients with parafunctional activities. The aims of this study were to evaluate the influence of Y-TZP surface roughness on the wear behavior (volume/height loss) against glass-based ceramics (i.e., IPS Empress CAD and IPS e.max CAD, Ivoclar-Vivadent). Thirty-two Y-TZP full-contour zirconia (Ardent®) sliders (ϕ=2 mm, 1.5 mm in height) were milled in a CAD/CAM unit and sintered according to the manufacturer instructions. Sliders were embedded in brass holders using acrylic resin and then randomly allocated into 2 groups according to the surface treatment (n=16): G1-as-machined and G2-glazed (Diazir®). Empress and e.max antagonists were cut into tabs (13×13×2 mm) wet-finished and also embedded in brass holders. Two-body pin-on-disc wear testing was performed at 1.2 Hz for 25,000 cycles under a 3-kg load. Non-contact profilometry was used to measure antagonist height (μm) and volume loss (mm3). Qualitative data of the testing surfaces and wear tracks were obtained using SEM. Statistics were performed using one- and two-way ANOVAs (α=0.05). The results indicated that G1 yielded significantly higher mean roughness values (Ra=0.83 μm, Rq=1.09 μm) than G2 (Ra=0.53 μm, Rq=0.78 μm). Regarding antagonist loss, G1 caused significantly less antagonist mean height and volume loss (68.4 μm, 7.6 mm3) for Empress than G2 (84.9 μm, 9.9 mm3) while no significant differences were found for e.max. Moreover, Empress significantly showed lower mean height and volume loss than e.max (p<0.0001). SEM data revealed morphological differences on wear characteristics between the two ceramics against Y-TZP. Within the limitations of this study, e.max wear was not affected by Y-TZP surface roughness. However, Empress wear was greater when opposing glazed Y-TZP. Overall, based on our findings, surface glazing on full-contour Y-TZP did not minimize glass-ceramic antagonist wear when compared with as-machined group.Item Effect of Hydrofluoric Acid Etching Followed by Unfilled Resin Application on the Biaxial Flexural Strength of a Glass-based Ceramic(2012) Posritong, Sumana, 1974-; Bottino, Marco C.; Brown, David T.; Hovijitra, Suteera, 1944-; Chu, Tien-Min Gabriel; Levon, John A.Background: Numerous studies have reported the use of hydrofluoric (HF) acid as one of the most effective methods for the achievement of a durable bond between glass-based ceramics and resin cements. Nevertheless, there is little information available regarding the potential deleterious effect on the ceramic mechanical strength. Objectives: (1) to investigate the effect of HF acid etching regimens on the biaxial flexural strength of a low-fusing nanofluorapatite glass-ceramic (IPS e.max ZirPress, Ivoclar Vivadent), (2) to study the ability of an unfilled resin (UR) to restore the initial (i.e., before etching) mechanical strength, and (3) to evaluate the effect of HF acid etching on the ceramic surface morphology before and after UR treatment via scanning electron microscopy (SEM). Methods: One hundred and forty-four disc-shaped (15 ± 1 mm in diameter and 0.8 ± 0.1 mm in thickness) IPS e.max ZirPress specimens were allocated into 12 groups, as follows: G1-control (no etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6- 60 + 60 s. Meanwhile, groups (G7- G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology evaluation of non-etched and etched IPS e.max ZirPress (G1-G12) was carried out by scanning electron microscopy (SEM). The flexural strength was determined by biaxial testing as described in ISO 6872. Statistics were performed using two-way ANOVA and the Sidak multiple comparisons (α = 0.05). In addition, the Weibull statistics were estimated. Results: A significant effect of etching time (p=0.0290) on biaxial flexural strength was observed. Indeed, G4 led to a significantly (p=0.0392) higher flexural strength than G1. Correspondingly, G10 revealed a considerably higher flexural strength than G7 (p=0.0392). Furthermore, biaxial flexural strength was significantly higher for G7 – G12 than for G1 – G6 (p<0.0001). For G1 – G6, G4 showed the highest Weibull characteristic strength while the lowest Weibull characteristic strength was seen in G6. In G7 – G12, the highest Weibull characteristic strength was presented in G10 whereas G7 had the lowest. Finally, the SEM data revealed that the HF acid etching affected the surface of IPS e.max ZirPress by generating pores and irregularities and more importantly that the UR was able to penetrate into the ceramic microstructure. Conclusion: Within the limitations of this study, HF acid etching time did not show a damaging effect on the biaxial flexural strength of the IPS e.max ZirPress ceramic. Moreover, the ceramic biaxial flexural strength could be enhanced after UR treatment.Item The effect of polymerization methods and fiber types on the mechanical behavior of fiber-reinforced composite resin(2015) Huang, Nan-Chieh; Chu, Tien-Min Gabriel; Hara, Anderson T.; Brown, David T.; Bottino, Marco C.; Levon, John A.Background: Interim restoration for a lost anterior tooth is often needed for temporary esthetic and functional purposes. Materials for interim restorations usually have less strength than ceramic or gold and can suffer from fracture. Several approaches have been proposed to reinforce interim restorations, among which fiber reinforcement has been regarded as one of the most effective methods. However, some studies have found that the limitation of this method is the poor polymerization between the fibers and the composite resin, which can cause debonding and failure. 64 Purpose: The purpose of this study was to investigate the effects of different polymerization methods as well as fiber types on the mechanical behavior of fiberreinforced composite resin. Material and Methods: A 0.2-mm thick fiber layer from strip fibers or mesh fibers embedded in uncured monomers w as fabricated with polymerization (two-step method) or without polymerization (one-step method), on top of which a 1.8-mm composite layer was added to make a bar-shape sample, followed by a final polymerization. Seventy-five specimens were fabricated and divided into one control group and four experimental groups (n=15), according to the type of glass fiber (strip or mesh) and polymerization methods (one-step or two-step). Specimens were tested for flexural strength, flexural modulus, and microhardness. The failure modes of specimens were observed by scanning electron microscopy (SEM). Results: The fiber types showed significant effect on the flexural strength of test specimens (F = 469.48; p < 0.05), but the polymerization methods had no significant effect (F = 0.05; p = 0.82). The interaction between these two variables was not significant (F = 1.73; p = 0.19). In addition, both fiber types and polymerization steps affected the flexural modulus of test specimens (F = 9.71; p < 0.05 for fiber type, and F = 12.17; p < 0.05 for polymerization method). However, the interaction between these two variables was not significant (F = 0.40; p = 0.53). Both fiber types and polymerization steps affected the Knoop hardness number of test specimens (F = 5.73; p < 0.05 for polymerization method. and F = 349.99; p < 0.05 for fiber type) and the interaction between these two variables was also significant (F = 5.73; p < 0.05). SEM images revealed the failure mode tended to become repairable while fiber reinforcement was 65 existed. However, different polymerization methods did not change the failure mode. Conclusion: The strip fibers showed better mechanical behavior than mesh fibers and were suggested for use in composite resin reinforcement. However, different polymerization methods did not have significant effect on the strength and the failure mode of fiber-reinforced compositeItem Effects of Various Thicknesses on Load to Fracture of Posterior CAD/CAM Lithium Disilicate Glass Ceramic Crowns Subjected to Cyclic Fatigue(2015) Al-Angari, Nadia; Platt, Jeffrey A.; Bottino, Marco C.; Haug, Steven P.; Brown, David T.; Levon, John A.Background: New glass ceramics and Computer-Aided Design/Computer Assisted Manufacture (CAD/CAM) have become common aspects of modern dentistry. The use of posterior ceramic crowns with a high level of esthetics, fabricated using the CAD/CAM technology is a current treatment modality. Several materials have been used to fabricate these crowns, including lithium disilicate glass-ceramics, which have not been fully investigated in the literature. Objective: to investigate the load to fracture of lithium disilicate glass ceramic posterior crowns fabricated by CAD/CAM technology with different material thicknesses adhesively cemented on epoxy resin. Methods: Four groups of different ceramic thicknesses (0.5 mm, 1 mm, 1.5 mm, and 2 mm) were fabricated by milling CAD/CAM lithium disilicate IPS emax CAD blocks. A total of 68 posterior crowns were surface treated and luted with a resin adhesive cement on an epoxy resin model. Samples were fatigued then loaded to fracture using a universal testing machine to test the fracture strength. Statistical comparisons between various crown thicknesses were performed using one-way ANOVA followed by Fisher's Protected Least Significant Differences. Results: There was a significant difference in the load-to-fracture (N) value for all comparisons of the four thickness groups (p < 0.0001), except 2 mm vs. 1.5 mm (p = 0.325). The mean load-to-fracture (N) was significantly higher for 2 mm than for 1 mm or 0.5 mm. Additionally, the mean load-to-fracture was significantly higher for 1.5 mm than for 1 mm or 0.5 mm. Furthermore, the mean load-to-fracture was significantly higher for 1 mm than for 0.5 mm. Conclusion: Within the limitation of this study, it is advisable for clinical applications to consider a crown thickness of 1.5 mm or greater of milled lithium disilicate for posterior single teeth.Item Evaluation of Second Generation Indirect Composite Resins(2008) Jain, Vishal V.; Platt, Jeffrey A., 1958-; Moore, B. Keith; Xie, Dong; Taskonak, BurakIndirect composites were introduced so that the composites can be cured extraorally to improve the degree of conversion and other material properties. These materials are indicated as long term full coverage dental restorative materials. However the mechanical and physical properties of new Second Generation Indirect Composites for this particular application have not been fully evaluated. The purpose of the study was to compare the appropriateness of the four commercially available laboratory composite resins for application as long term full coverage restorative materials. Water solubility and sorption levels, staining resistance, gloss, surface roughness, wear due to tooth brush abrasion, two-body and three-body wear, fracture toughness and radiopacity of four indirect composite restorative materials; Radica (Dentsply), Sculpture Plus (Pentron), Belleglass-NG (Kerr) and Gradia Indirect (GC America) were determined. The results showed that the four composites differed significantly from each other. Bell eglass-NG and Gradia Indirect showed negative water solubility. All the four groups demonstrated less color stability when exposed to coffee slurry for 3 weeks. Significant decrease in gloss and volume occurred when the omposites were exposed to simulated tooth-brush abrasion. Sculpture Plus v demonstrated lowest abrasion and attrition wear resistance among the four indirect composites. Radica had the highest fracture toughness and radiopacity of all the composites with values close to or less then dentin. In conclusion, different indirect composite systems possessed different mechanical and physical advantages when compared to each other. In general, Belleglass-NG demonstrated superior advantages due to its higher abrasion and attrition wear resistance and stain resistance. This was followed by Radica,Gradia Indirect and Sculpture Plus.Item Histomorphometric and Biomechanical Analyses of Osseointegration of Four Different Orthodontic Mini Implant Surfaces(2011) Yadav, Sumit; Roberts, W. Eugene, Jr.; Chen, Jie; Katona, Thomas R.; Liu, Sean S.; Huja, Sarandeep S. (Sarandeep Singh), 1965-Objective: To evaluate the osseointegration potential of four different surfaces of mini-implants .We hypothesized that mini-implants surface roughness alters the intrinsic biomechanical properties of the bone integrated to titanium. Materials and Methods: Mini implants and circular discs were made from alloy Ti6Al4V grade 5. On the basis of surface treatment study was divided into 4 groups: Group 1: Machined: no surface treatment, Group 2: Acid etched: with hydrochloric acid, Group 3: Grit Blasted with alumina and Group 4: Grit blasted +Acid etched. Surface roughness parameters (mean surface roughness: Ra and Quadratic Average roughness: Rq) of the four discs from each group were measured by the optical profilometer. Contact angle measurement of 3 discs from each group was done with a Goniometer. Contact angle of liquids with different hydrophobicity and hydrophilicity were measured. 128 mini implants, differing in surface treatment, were placed into the tibias and femurs of 8 adult male New Zealand white rabbits. Biomechanical properties (Removal torque and hardness) measurements and histomorphometric observations were measured. Results: Ra and Rq of groups were: Machined (1.17±0.11, 2.59±0.09) Acid etched (1.82±0.04, 3.17±0.13), Grit blasted (4.83±0.23, 7.04±0.08), Grit blasted + Acid etched (3.64±0.03, 4.95±0.04) respectively. Group 4 had significantly (p=0.000) lower Ra and Rq than Group 3. The interaction between the groups and liquid was significant. Group 4 had significantly lower contact angle measurements (40.4°, 26.9°), both for blood and NaCl when compared to other three groups (p≤0.01). Group 4 had significantly higher torque than Group 3 (Tibia: 13.67>9.07N-cm; Femur: 18.21>14.12N-cm), Group 4 (Tibia: 13.67>9.78N-cm; Femur: 18.21>12.87N-cm), and machined (Tibia: 13.67>4.08N-cm; Femur: 18.21>6.49N-cm). SEM analysis reveals significantly more bone implant gap in machined implant surfaces than treated implant surfaces. Bone to implant contact had significantly higher values for treated mini implant surface than machined surface. Hardness of the bone near the implant bone interface is 20 to 25% less hard than bone 1mm away from it in both Femur and Tibia. Conclusion: Surface roughness and wettability of mini implants influences their biological response. Grit blasted and acid etched mini implants had lowest contact angle for different liquids tested and highest removal torques.