ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Succinate dehydrogenase"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Mitochondrial Complex II In Intestinal Epithelial Cells Regulates T-cell Mediated Immunopathology
    (Springer Nature, 2021) Fujiwara, Hideaki; Seike, Keisuke; Brooks, Michael D.; Mathew, Anna V.; Kovalenko, Ilya; Pal, Anupama; Lee, Ho-Joon; Peltier, Daniel; Kim, Stephanie; Liu, Chen; Oravecz-Wilson, Katherine; Li, Lu; Sun, Yaping; Byun, Jaeman; Maeda, Yoshinobu; Wicha, Max S.; Saunders, Tom; Rehemtulla, Alnawaz; Lyssiotis, Costas A.; Pennathur, Subramaniam; Reddy, Pavan; Microbiology and Immunology, School of Medicine
    Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease (GVHD), inflammatory bowel disease (IBD) and immune checkpoint blockade (ICB) mediated colitis. But little is known about the target cell intrinsic features that influence disease severity. Herein we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses identified disruption of IEC intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC specific mitochondrial complex II component SDHA in the regulation of the severity of T cell mediated intestinal diseases.
  • Loading...
    Thumbnail Image
    Item
    Succinate dehydrogenase-complex II regulates skeletal muscle cellular respiration and contractility but not muscle mass in genetically induced pulmonary emphysema
    (American Association for the Advancement of Science, 2024) Balnis, Joseph; Tufts, Ankita; Jackson, Emily L.; Drake, Lisa A.; Singer, Diane V.; Lacomis, David; Lee, Chun Geun; Elias, Jack A.; Doles, Jason D.; Maher, L. James, III; Jen, Annie; Coon, Joshua J.; Jourd’heuil, David; Singer, Harold A.; Vincent, Catherine E.; Jaitovich, Ariel; Anatomy, Cell Biology and Physiology, School of Medicine
    Reduced skeletal muscle mass and oxidative capacity coexist in patients with pulmonary emphysema and are independently associated with higher mortality. If reduced cellular respiration contributes to muscle atrophy in that setting remains unknown. Using a mouse with genetically induced pulmonary emphysema that recapitulates muscle dysfunction, we found that reduced activity of succinate dehydrogenase (SDH) is a hallmark of its myopathic changes. We generated an inducible, muscle-specific SDH knockout mouse that demonstrates lower mitochondrial oxygen consumption, myofiber contractility, and exercise endurance. Respirometry analyses show that in vitro complex I respiration is unaffected by loss of SDH subunit C in muscle mitochondria, which is consistent with the pulmonary emphysema animal data. SDH knockout initially causes succinate accumulation associated with a down-regulated transcriptome but modest proteome effects. Muscle mass, myofiber type composition, and overall body mass constituents remain unaltered in the transgenic mice. Thus, while SDH regulates myofiber respiration in experimental pulmonary emphysema, it does not control muscle mass or other body constituents.
  • Loading...
    Thumbnail Image
    Item
    Towards a new WHO classification of renal cell tumor: what the clinician needs to know—a narrative review
    (AME Publishing, 2021-03) Cimadamore, Alessia; Cheng, Liang; Scarpelli, Marina; Massari, Francesco; Mollica, Veronica; Santoni, Matteo; Lopez-Beltran, Antonio; Montironi, Rodolfo; Moch, Holger; Pathology and Laboratory Medicine, School of Medicine
    In 1952, renal cell carcinomas had been divided into 2 categories—clear cell or granular cell—depending upon their cytoplasmic staining characteristics. In the following years, the inventory of renal epithelial tumors has expanded by the addition of tumors named by their architectural pattern (i.e., papillary RCC, tubulocystic RCC), anatomic location (i.e., collecting duct carcinoma, renal medullary carcinoma), associated diseases (i.e., acquired cystic disease-associated RCCs). With the extensive application of molecular diagnostic techniques, it becomes possible to detect genetic distinctions between various types of renal neoplasm and discover new entities, otherwise misdiagnosed or diagnosed as unclassified RCC. Some tumors such as ALK rearrangement-associated RCC, MiT family translocation renal carcinomas, SDH-deficient renal cancer or FH-deficient RCC, are defined by their molecular characteristics. The most recent World Health Organization (WHO) classification of renal neoplasms account for more than 50 entities and provisional entities. New entities might be included in the upcoming WHO classification. The aim of this review is to summarise and discuss the newly acquired data and evidence on the clinical, pathological, molecular features and on the prognosis of new RCC entities, which will hopefully increase the awareness and the acceptance of these entities among clinicians and improve prognostication for individual patients.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University