ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Stroma"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells
    (SpringerNature, 2017-03-30) Richards, Katherine E.; Zeleniak, Ann E.; Fishel, Melissa L.; Wu, Junmin; Littlepage, Laurie E.; Hill, Reginald; Department of Pediatrics, IU School of Medicine
    Cancer associated fibroblasts (CAFs) comprise the majority of the tumor bulk of pancreatic adenocarcinomas (PDACs). Current efforts to eradicate these tumors focus predominantly on targeting the proliferation of rapidly growing cancer epithelial cells. We know that this is largely ineffective with resistance arising in most tumors following exposure to chemotherapy. Despite the long-standing recognition of the prominence of CAFs in PDAC, the effect of chemotherapy on CAFs and how they may contribute to drug resistance in neighboring cancer cells is not well characterized. Here we show that CAFs exposed to chemotherapy play an active role in regulating the survival and proliferation of cancer cells. We found that CAFs are intrinsically resistant to gemcitabine, the chemotherapeutic standard of care for PDAC. Further, CAFs exposed to gemcitabine significantly increase the release of extracellular vesicles called exosomes. These exosomes increased chemoresistance-inducing factor, Snail, in recipient epithelial cells and promote proliferation and drug resistance. Finally, treatment of gemcitabine-exposed CAFs with an inhibitor of exosome release, GW4869, significantly reduces survival in co-cultured epithelial cells, signifying an important role of CAF exosomes in chemotherapeutic drug resistance. Collectively, these findings show the potential for exosome inhibitors as treatment options alongside chemotherapy for overcoming PDAC chemoresistance.
  • Loading...
    Thumbnail Image
    Item
    Tumor-stroma interaction mediated by tissue transglutaminase in pancreatic cancer
    (2015-08) Lee, Jiyoon; Matei, Daniela Elena; Harrington, Maureen A.; Herbert, Brittney-Shea; Xie, Jingwu
    Pancreatic ductal adenocarcinoma (PDA) is a deadly disease due to early metastasis and resistance to chemotherapy. PDA is commonly associated with a dense desmoplastic stroma, which forms a protective niche for cancer cells. Tissue transglutaminase (TG2), a Ca2+-dependent enzyme, is abundantly expressed in pancreatic cancer cells and crosslinks proteins through acyl-transfer transamidation between glutamine and lysine residues. The objective of the study was to determine the functions of TG2 in the pancreatic stroma. Orthotopic pancreatic xenografts and co-culture systems tested the mechanisms by which the enzyme modulates tumor-stroma interactions. We showed that TG2 secreted by cancer cells is enzymatically active and renders the stroma denser by crosslinking collagen, which in turn activates fibroblasts and stimulates their proliferation. Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are transcription factors involved in mechanotransduction. The TG2-mediated fibrosis-rich, stiff microenvironment conveys mechanical cues to cancer cells leading to activation of YAP and TAZ, promoting cell proliferation and tumor growth. Stable knockdown of TG2 in pancreatic cancer cells led to decreased size of pancreatic xenografts and increased sensitivity of xenografts to gemcitabine. Taken together, our results demonstrate that TG2 secreted in the tumor microenvironment orchestrates the crosstalk between cancer cells and the stroma, fundamentally impacting tumor growth and response to chemotherapy. Our study supports TG2 inhibition in the pancreatic stroma as a novel strategy to block pancreatic cancer progression.
  • Loading...
    Thumbnail Image
    Item
    Vaccination against prostate cancer using a live tissue factor deficient cell line in Lobund–Wistar rats
    (Springer, 2007) Heinrich, Julie E.; Pollard, Morris; Wolter, William A.; Liang, Zhong; Song, Hui; Rosen, Elliot D.; Suckow, Mark A.; Medical and Molecular Genetics, School of Medicine
    Reducing expression of the tissue factor gene in prostate adenocarcinoma cells (PAIII) results in a cell line that, in vivo, mimics the growth of wildtype (wt) PAIII. However, instead of continuing to grow and metastasize as wt PAIII tumors do, tissue factor deficient PAIII (TFD PAIII) masses spontaneously regress after several weeks. Although whole cell vaccines are typically inactivated prior to administration to prevent proliferation within the host, numerous studies have suggested that exposure to live, attenuated, whole tumor cells, and the extracellular microenvironment they recruit, increases immunotherapeutic potential. Here, we provide support for this notion, and a strategy through which to implement it, by demonstrating that subcutaneous vaccinations with the TFD PAIII protect the Lobund-Wistar rat against subsequent wt PAIII cell challenge. TFD PAIII immunized rats suffered significantly less metastasis of wt PAIII challenge tumors compared to unvaccinated naïve controls rats. These results offer the intriguing possibility that the TFD PAIII vaccine is an effective system for the prevention and, possibly, the treatment of prostate cancer.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University