ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Strain imaging"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Maturational Patterns of Systolic Ventricular Deformation Mechanics by Two-Dimensional Speckle Tracking Echocardiography in Preterm Infants over the First Year of Age
    (Elsevier, 2017-07) Levy, Philip T.; EL-Khuffash, Afif; Patel, Meghna D.; Breatnach, Colm R.; James, Adam T.; Sanchez, Aura A.; Abuchabe, Cristina; Rogal, Sarah R.; Holland, Mark R.; McNamara, Patrick J.; Jain, Amish; Franklin, Orla; Mertens, Luc; Hamvas, Aaron; Singh, Gautam K.; Radiology and Imaging Sciences, School of Medicine
    BACKGROUND: The aim of this study was to determine the maturational changes in systolic ventricular strain mechanics by two-dimensional speckle-tracking echocardiography in extremely preterm neonates from birth to 1 year of age and discern the impact of common cardiopulmonary abnormalities on the deformation measures. METHODS: In a prospective multicenter study of 239 extremely preterm infants (<29 weeks gestation at birth), left ventricular (LV) global longitudinal strain (GLS) and global longitudinal systolic strain rate (GLSRs), interventricular septal wall (IVS) GLS and GLSRs, right ventricular (RV) free wall longitudinal strain and strain rate, and segmental longitudinal strain in the RV free wall, LV free wall, and IVS were serially measured on days 1, 2, and 5 to 7, at 32 and 36 weeks postmenstrual age, and at 1 year corrected age (CA). Premature infants who developed bronchopulmonary dysplasia or had echocardiographic findings of pulmonary hypertension were analyzed separately. RESULTS: In uncomplicated preterm infants (n = 103 [48%]), LV GLS and GLSRs remained unchanged from days 5 to 7 to 1 year CA (P = .60 and P = .59). RV free wall longitudinal strain, RV free wall longitudinal strain rate, and IVS GLS and GLSRs significantly increased over the same time period (P < .01 for all measures). A significant base-to-apex (highest to lowest) segmental longitudinal strain gradient (P < .01) was seen in the RV free wall and a reverse apex-to-base gradient (P < .01) in the LV free wall. In infants with bronchopulmonary dysplasia and/or pulmonary hypertension (n = 119 [51%]), RV free wall longitudinal strain and IVS GLS were significantly lower (P < .01), LV GLS and GLSRs were similar (P = .56), and IVS segmental longitudinal strain persisted as an RV-dominant base-to-apex gradient from 32 weeks postmenstrual age to 1 year CA. CONCLUSIONS: This study tracks the maturational patterns of global and regional deformation by two-dimensional speckle-tracking echocardiography in extremely preterm infants from birth to 1 year CA. The maturational patterns are ventricular specific. Bronchopulmonary dysplasia and pulmonary hypertension leave a negative impact on RV and IVS strain, while LV strain remains stable.
  • Loading...
    Thumbnail Image
    Item
    Myocardial strain imaging in Duchenne muscular dystrophy
    (Frontiers Media, 2022-11-23) Earl, Conner C.; Soslow, Jonathan H.; Markham, Larry W.; Goergen, Craig J.; Pediatrics, School of Medicine
    Cardiomyopathy (CM) is the leading cause of death for individuals with Duchenne muscular dystrophy (DMD). While DMD CM progresses rapidly and fatally for some in teenage years, others can live relatively symptom-free into their thirties or forties. Because CM progression is variable, there is a critical need for biomarkers to detect early onset and rapid progression. Despite recent advances in imaging and analysis, there are still no reliable methods to detect the onset or progression rate of DMD CM. Cardiac strain imaging is a promising technique that has proven valuable in DMD CM assessment, though much more work has been done in adult CM patients. In this review, we address the role of strain imaging in DMD, the mechanical and functional parameters used for clinical assessment, and discuss the gaps where emerging imaging techniques could help better characterize CM progression in DMD. Prominent among these emerging techniques are strain assessment from 3D imaging and development of deep learning algorithms for automated strain assessment. Improved techniques in tracking the progression of CM may help to bridge a crucial gap in optimizing clinical treatment for this devastating disease and pave the way for future research and innovation through the definition of robust imaging biomarkers and clinical trial endpoints.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University