ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Statistical significance estimation"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Markov chain Monte Carlo method for estimating the statistical significance of proteoform identifications by top-down mass spectrometry
    (ACS, 2019-03) Kou, Qiang; Wang, Zhe; Lubeckyj, Rachele A.; Wu, Si; Liu, Xiaowen; BioHealth Informatics, School of Informatics and Computing
    Top-down mass spectrometry is capable of identifying whole proteoform sequences with multiple post-translational modifications because it generates tandem mass spectra directly from intact proteoforms. Many software tools, such as ProSightPC, MSPathFinder, and TopMG, have been proposed for identifying proteoforms with modifications. In these tools, various methods are employed to estimate the statistical significance of identifications. However, most existing methods are designed for proteoform identifications without modifications, and the challenge remains for accurately estimating the statistical significance of proteoform identifications with modifications. Here we propose TopMCMC, a method that combines a Markov chain random walk algorithm and a greedy algorithm for assigning statistical significance to matches between spectra and protein sequences with variable modifications. Experimental results showed that TopMCMC achieved high accuracy in estimating E-values and false discovery rates of identifications in top-down mass spectrometry. Coupled with TopMG, TopMCMC identified more spectra than the generating function method from an MCF-7 top-down mass spectrometry data set.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University