- Browse by Subject
Browsing by Subject "Spinophilin"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Cell-Specific Spinophilin Function Underlying Striatal Motor Adaptations Associated with Amphetamine-Induced Behavioral Sensitization(2022-07) Watkins, Darryl Shumon; Yamamoto, Bryan K.; Atwood, Brady K.; Baucum, Anthony J. II; Hudmon, Andy; Logrip, Marian L.Striatal-mediated pathological disease-states such as Obsessive-Compulsive Disorder (OCD), Parkinson’s Disease (PD), and psychostimulant drug addiction/abuse are coupled with distinct motor movement abnormalities. In addition, these disorders are associated with perturbed synaptic transmission. Proper synaptic transmission is critical for maintaining neuronal communication. Furthermore, in many striatal-dependent disease-states, the principle striatal neurons, medium spiny neurons (MSNs), exhibit differential perturbations in downstream signaling. Signal transduction pathways that are localized to the glutamatergic post-synaptic density (PSD) of GABAergic MSNs regulate protein phosphorylation in a tightly controlled manner. Alterations in the control of this phosphorylation in striatal MSNs are observed in myriad striatal pathological diseasestates and can give rise to perturbations in synaptic transmission. While serine/threonine kinases obtain substrate specificity, in part, by phosphorylating specific consensus sites, serine/threonine phosphatases such as protein phosphatase 1 (PP1) are much more promiscuous. To obtain substrate selectivity, PP1 associates with targeting proteins. The major targeting protein for PP1 in the PSD of striatal dendritic spines is spinophilin. Spinophilin not only binds PP1, but also concurrently interacts with myriad synaptic proteins. Interestingly, dopamine depletion, an animal model of PD, modulates spinophilin protein-protein interactions in the striatum. However, spinophilin function on basal striatal-mediated motor behaviors such as the rotarod or under hyperdopaminergic states such as those observed following psychostimulant-induced behavioral sensitization are less well characterized. To elucidate spinophilin function more specifically, we have generated multiple transgenic animals that allow for cell type-specific loss of spinophilin as well as cell-specific interrogation of spinophilin protein interactions. Here, I report the functional role of spinophilin in regulating striatal mediated motor behaviors and functional changes associated with amphetamine-induced locomotor sensitization. In addition, we define changes in spinophilin protein-protein interactions that may mediate these behavioral changes. Furthermore, global loss of spinophilin abrogates amphetamine-induced sensitization and plays a critical role in striatal motor learning and performance. The data suggest that the striatal spinophilin protein interactome is upregulated in MSNs following psychostimulant administration. In addition, loss of spinophilin changes protein expression in myriad psychostimulant-mediated striatal adaptations. Taken together the data suggests that spinophilin’s protein-protein interactions in the striatum are obligate for appropriate striatal mediated motor function.Item Mechanisms and Consequences of Dopamine Depletion-Induced Attenuation of the Spinophilin/Neurofilament Medium Interaction(Hindawi, 2017) Hiday, Andrew C.; Edler, Michael C.; Salek, Asma B.; Morris, Cameron W.; Thang, Morrent; Rentz, Tyler J.; Rose, Kristie L.; Jones, Lisa M.; Baucum, Anthony J., II; Biology, School of ScienceSignaling changes that occur in the striatum following the loss of dopamine neurons in the Parkinson disease (PD) are poorly understood. While increases in the activity of kinases and decreases in the activity of phosphatases have been observed, the specific consequences of these changes are less well understood. Phosphatases, such as protein phosphatase 1 (PP1), are highly promiscuous and obtain substrate selectivity via targeting proteins. Spinophilin is the major PP1-targeting protein enriched in the postsynaptic density of striatal dendritic spines. Spinophilin association with PP1 is increased concurrent with decreases in PP1 activity in an animal model of PD. Using proteomic-based approaches, we observed dopamine depletion-induced decreases in spinophilin binding to multiple protein classes in the striatum. Specifically, there was a decrease in the association of spinophilin with neurofilament medium (NF-M) in dopamine-depleted striatum. Using a heterologous cell line, we determined that spinophilin binding to NF-M required overexpression of the catalytic subunit of protein kinase A and was decreased by cyclin-dependent protein kinase 5. Functionally, we demonstrate that spinophilin can decrease NF-M phosphorylation. Our data determine mechanisms that regulate, and putative consequences of, pathological changes in the association of spinophilin with NF-M that are observed in animal models of PD.Item Mechanisms and consequences of regulating the spinophilin/NMDA receptor interaction(2016-07-12) Beiraghi Salek, Asma; Baucum, Anthony J., II; Belecky-Adams, Teri; Watson, John C.; Cummins, Theodore R.Parkinson disease (PD) is the second most common neurodegenerative disease. It is characterized by loss of dopaminergic cells in the substantia nigra, which causes loss of dopaminergic synapses onto striatal medium spiny neurons (MSNs). Dendritic spines that are localized to these striatal MSNs receive synaptic inputs from both the nigral dopamine neurons and cortical glutamate neurons. Signaling downstream of excitatory, glutamatergic drive is modulated by dopamine. This tripartite connection: glutamate, dopamine, and MSN dendritic spine, is important for normal motor function. Glutamate released from presynaptic terminals binds to and activates two classes of inotropic glutamate receptors that are localized to dendritic spines on striatal MSNs: the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and the N-methyl-D-aspartate receptor (NMDAR). Once these receptors are activated, they allow for Ca2+ influx, which in turn activates Ca2+-dependent processes that underlie neural plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Proper machinery in the pre- and post-synaptic neurons is required for normal signal transduction. Moreover, this signal transduction requires proper organization of synaptic proteins, which is achieved by specific protein-protein interactions. These protein-protein interactions are dynamic and can be modulated under various conditions, including pathological changes in the phosphorylation status of a specific protein. Catalytically active proteins called phosphatases and kinases specifically regulate the phosphorylation status of synaptic proteins. Pathologically, in PD there is increased autophosphorylation and activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). This increased phosphorylation may be due to changes in the activity of the serine/threonine protein phosphatase 1 (PP1), a highly conserved protein serine/threonine phosphatase that has a diverse set of functions in eukaryotes. Serine/threonine phosphatase substrate specificity is obtained via interactions with targeting and regulatory proteins. One such protein, spinophilin, is a scaffolding protein that targets PP1 to various synaptic substrates to regulate their phosphorylation. Interestingly, the association of PP1 with spinophilin is enhanced in a rat model of PD. The NMDAR is another protein that has altered phosphorylation in animal models of PD. We have found that there is a decrease in the NMDAR-spinophilin interaction in an animal model of PD. Here, we have found that spinophilin and the NMDAR interact in brain tissue and when overexpressed in a mammalian cell system. Moreover, we have identified novel mechanisms that regulate this interaction and have identified putative consequences of altering this association. These studies give us novel insight into mechanisms and consequences underlying pathological changes observed in an animal model of PD. Understanding these changes will inform novel therapeutic targets that may be useful in modulating striatal function.Item Neurabin's Influence on Striatal Dependent Behaviors(2022-08) Corey, Wesley; Cummins, Theodore; Berbari, Nicolas; Baucum, Anthony J., II.The striatum is a key brain region involved in regulating motor output and integration. The dorsal and ventral subdivisions of the striatum work in concert to mediate the reinforcing and motor behavioral outputs of the striatum. Moreover, dysfunction of these striatal regions is involved in various diseases including Parkinson’s disease and drug addiction. Therefore, understanding and characterizing biochemical and molecular changes within the striatum associated with these diseases is key in devolving novel therapeutics to treat these disease states. The main output neurons of the striatum are GABAergic, medium-spiny neurons (MSNs), and striatal functionality is mediated by neuroplastic changes in MSN activity. Within MSNs, dopaminergic receptor activation triggers a cascade of reversable phosphorylation, which is facilitated by the activation of specific protein kinases and inhibition of specific protein phosphatases. In comparison to the 350 serine/threonine protein kinases expressed within the striatum, there are only 40 major serine/threonine protein phosphatases. However, serine/threonine protein phosphatases, such as protein phosphatase 1 (PP1), gain their target specificity by interacting with phosphatase-targeting proteins. Within the striatum, the neurabins, termed neurabin and spinophilin, are the most abundant PP1 targeting proteins in dendritic spines. Spinophilin’s expression in the striatum has been strongly characterized, and spinophilin has been shown to regulate striatal-dependent motor-skill learning and amphetamine-induced locomotor sensitization. In contrast to spinophilin, neurabin’s expression within the striatum and its involvement in these striatal-dependent behaviors has not been fully probed. I found that neurabin expression in the striatum is not sex-dependent but is age-dependent. In addition to these data, I also present validation of new global, constitutive and conditional neurabin knock-out mouse lines. Finally, I present data that, unlike previous studies in spinophilin knockout mice, neurabin knockout mice have enhanced striatal-dependent motor-skill learning, but do not impact amphetamine-induced locomotor sensitization. Further characterization of neurabin’s expression in the striatum, and its role in these key striatal behaviors could provide a druggable target for therapeutics designed to address striatal dysfunction.Item Phosphorylation State Modulates the Interaction between Spinophilin and Neurofilament Medium(2015-04-07) Hiday, Andrew C.; Baucum, Anthony J.A histological marker of Parkinson’s disease (PD) is the loss of synapses located on striatal medium spiny neurons (MSNs) as a result of dopaminergic nigral cell depletion. The dendritic spines that give MSNs their name have a well-characterized structure and are the main regions of post-synaptic input. It has been shown that spines have altered functionality and morphology in many neurodegenerative diseases. Spine morphology, and potentially function, is dictated by an array of structural proteins and their associations with other proteins in a region dubbed the post-synaptic density (PSD). Spinophilin and neurofilament medium (NF-M) are two proteins that are enriched in the PSD and have potential implications in PD. Interestingly, preliminary data show that there is a decrease in the NF-M-spinophilin interaction in animal models of PD. Here it is shown that these two proteins interact in brain tissue and when overexpressed in a mammalian cell system. Moreover, we have begun to determine mechanisms that regulate this interaction. It is known that there is a misregulation of protein phosphatases and kinases in many neurodegenerative diseases. Moreover, the phosphorylation state of a protein can regulate its association with other proteins. Therefore, we hypothesize that the phosphorylation state of either protein affects the interaction between spinophilin and NF-M. Furthermore, we have conducted experiments utilizing protein phosphatases and kinases that are known to modulate the phosphorylation state of NF-M and/or spinophilin. Data show that both kinase and phosphatase activity and/or expression modulates the NF-M-spinophilin interaction in heterologous cell lines. Through the use of MS/MS analysis, we have begun to map specific phosphorylation sites that may play a role in regulating this interaction. Currently, we are elucidating the specific effects of these post-translational modifications on regulating the spinophilin-NF-M interaction. These data will enhance our knowledge of spinophilin’s interactions and how these interactions are altered in neurological disorders such as PD.Item Proteomic Analysis of the Spinophilin Interactome in Rodent Striatum Following Psychostimulant Sensitization(MDPI, 2018-12-17) Watkins, Darryl S.; True, Jason D.; Mosley, Amber L.; Baucum, Anthony J., II; Biochemistry and Molecular Biology, School of MedicineGlutamatergic projections from the cortex and dopaminergic projections from the substantia nigra or ventral tegmental area synapse on dendritic spines of specific GABAergic medium spiny neurons (MSNs) in the striatum. Direct pathway MSNs (dMSNs) are positively coupled to protein kinase A (PKA) signaling and activation of these neurons enhance specific motor programs whereas indirect pathway MSNs (iMSNs) are negatively coupled to PKA and inhibit competing motor programs. An imbalance in the activity of these two programs is observed following increased dopamine signaling associated with exposure to psychostimulant drugs of abuse. Alterations in MSN signaling are mediated by changes in MSN protein post-translational modifications, including phosphorylation. Whereas direct changes in specific kinases, such as PKA, regulate different effects observed in the two MSN populations, alterations in the specific activity of serine/threonine phosphatases, such as protein phosphatase 1 (PP1) are less well known. This lack of knowledge is due, in part, to unknown, cell-specific changes in PP1 targeting proteins. Spinophilin is the major PP1-targeting protein in striatal postsynaptic densities. Using proteomics and immunoblotting approaches along with a novel transgenic mouse expressing hemagglutainin (HA)-tagged spinophilin in dMSNs and iMSNs, we have uncovered cell-specific regulation of the spinophilin interactome following a sensitizing regimen of amphetamine. These data suggest regulation of spinophilin interactions in specific MSN cell types and may give novel insight into putative cell-specific, phosphatase-dependent signaling pathways associated with psychostimulants.Item Proximity labeling and orthogonal nanobody pulldown (ID-oPD) approaches to map the spinophilin interactome uncover a putative role for spinophilin in protein homeostasis(bioRxiv, 2025-01-23) Claeboe, Emily T.; Blake, Keyana L.; Shah, Nikhil R.; Morris, Cameron W.; Hens, Basant; Atwood, Brady K.; Absalon, Sabrina; Mosley, Amber L.; Doud, Emma H.; Baucum, Anthony J., II; Biochemistry and Molecular Biology, School of MedicineSpinophilin is a dendritic spine enriched scaffolding and protein phosphatase 1 targeting protein. To detail spinophilin interacting proteins, we created an Ultra-ID and ALFA-tagged spinophilin encoding construct that permits proximity labeling and orthogonal nanobody pulldown (ID-oPD) of spinophilin-associated protein complexes in heterologous cells. We identified 614 specific, and 312 specific and selective, spinophilin interacting proteins in HEK293 cells and validated a subset of these using orthogonal approaches. Many of these proteins are involved in mRNA processing and translation. In the brain, we determined that spinophilin mRNA is highly neuropil localized and that spinophilin may normally function to limit its own expression but promote the expression of other PSD-associated proteins. Overall, our use of an ID-oPD approach uncovers a novel putative role for spinophilin in mRNA translation and synaptic protein expression specifically within dendritic spines.Item Spinophilin limits GluN2B-containing NMDAR activity and sequelae associated with excessive hippocampal NMDAR function(Cold Spring Harbor Laboratory, 2021-01-01) Salek, Asma B.; Bansal, Ruchi; Berbari, Nicolas F.; Baucum, Anthony J., II.; Biology, School of ScienceN-methyl-D-Aspartate receptors (NMDARs) are calcium-permeable ion channels that are ubiquitously expressed within the glutamatergic postsynaptic density. Phosphorylation of NMDAR subunits defines receptor activity and surface localization. Modulation of NMDAR phosphorylation by kinases and phosphatases regulates calcium entering the cell and subsequent activation of calcium-dependent processes. Spinophilin is the major synaptic protein phosphatase 1 (PP1) targeting protein that controls phosphorylation of myriad substrates via targeting or inhibition of PP1. Spinophilin limits NMDAR function in a PP1-dependent manner and we have previously shown that spinophilin sequesters PP1 away from the GluN2B subunit of the NMDAR, which results in increased phosphorylation of Ser-1284. However, how spinophilin modifies NMDAR function is unclear. Herein, we detail that while Ser-1284 phosphorylation increases calcium influx via GluN2B-containing NMDARs, overexpression of spinophilin decreases GluN2B-containing NMDAR activity by decreasing its surface expression. In hippocampal neurons isolated from spinophilin knockout animals there is an increase in cleaved caspase-3 levels compared to wildtype mice; however, this effect is not exclusively due to NMDAR activation; suggesting multiple putative mechanisms by which spinophilin may modulate caspase cleavage. Behaviorally, our data suggest that spinophilin knockout mice have deficits in spatial cognitive flexibility, a behavior associated GluN2B function within the hippocampus. Taken together, our data demonstrate a unique mechanism by which spinophilin modulates GluN2B containing NMDAR phosphorylation, channel function, and trafficking and that loss of spinophilin promotes pathological sequelae associated with GluN2B dysfunction.Item Spinophilin Signaling: Impacts on Body Weight, Obesity, and Beta-Cell Function(2023-12) Stickel, Kaitlyn Christine; Cummins, Theodore; Baucum, Anthony, II; Belecky-Adams, Teri; Mastracci, Teresa; Linneman, AmeliaObesity is a worldwide epidemic that is partially linked to changing lifestyles within the modern world, including increased access to calorically dense foods and decreased energy output due to more sedentary jobs. Obesity can lead to many different health complications, such as cardiovascular diseases or Type 2 Diabetes (T2D). Obesity-induced T2D is caused by dysfunction of the insulin-producing beta cells of the pancreas. However, mechanisms that promote obesity and the mechanisms by which obesity leads to beta cell dysfunction are not fully known. Spinophilin is a filamentous (F)-actin binding, protein scaffolding, and protein phosphatase 1 (PP1)-targeting protein that can regulate protein. Spinophilin has multiple actions. Spinophilin can bundle filamentous actin to modulate the cellular cytoskeleton. Spinophilin also mediates substrate phosphorylation by targeting and modulating PP1 activity. In addition, spinophilin interacts with multiple proteins, including certain G-protein coupled receptors and can scaffold them with F-actin and/or PP1. Previous studies established that spinophilin KO mice have decreased fat mass, increased lean mass, and improved glucose tolerance. Yet, how spinophilin modulates the above metabolic parameters is unclear. We found that spinophilin is expressed in hypothalamic tissue and appears to also be expressed in the feeding center of the hypothalamus, as well as in other glucose-sensing cells known as tanycytes that neighbor the arcuate nucleus and the third ventricle. We found that loss of spinophilin limited weight gain observed in both a leptin receptor db/db mouse line (Leprdb/db) and mice fed a high-fat diet. Moreover, we found that the decreased fat mass seen in global spinophilin KO mice, at least in the Leprdb/db mice, was not due to major differences in feeding behaviors, consistent with what was observed by other groups using high-fat diet-fed mice. As spinophilin was not associated with alterations in feeding, we posited that its ability to modulate glucose homeostasis may be linked to non-neuronal actions of the protein. Previous studies have found that spinophilin may regulate adipose tissue function and in vitro pancreatic beta cell function; however, its role in the pancreas and beta cells in vivo is not well characterized. We found that spinophilin is expressed in mouse pancreas. Using proteomics-based approaches we identified multiple putative spinophilin interacting proteins isolated from intact pancreas, including: PP1, the spinophilin homolog neurabin, and myosin-9. KEGG pathway analysis of proteomic proteins identified multiple pathways regulating ER stress, such as the unfolded protein response, and cytoskeletal arrangement. We observed decreased associations of spinophilin with PP1 and neurabin and increased association with myosin-9 in obese, Leprdb/db mice as early as 6 weeks, as well as significant decreases in body weight when spinophilin was knocked out in Leprdb/db mice. Moreover, we confirmed a robust and specific increased interaction of spinophilin with myosin-9, and other cytoskeletal proteins. Additionally, we found specific spinophilin interactions with ribosomal proteins, and exocrine and digestion proteins in high-fat diet-fed mice. Using our recently generated pancreatic beta cell-specific spinophilin KO mice, we found that loss of spinophilin in mice on a high-fat diet significantly reduces weight gain and improves whole- body glucose tolerance, and loss of spinophilin specifically within the beta cells also improves whole-body glucose tolerance, with no effect on body weight, further suggesting cell type-specific and independent roles for spinophilin on body weight and glucose homeostasis.Item Spinophilin-Dependent Regulation of the Phosphorylation, Protein Interactions, and Function of the GluN2B Subunit of the NMDAR and its Implications in Neuronal Cell Death(2020-12) Beiraghi Salek, Asma; Baucum II, A.J.; Cummins, Ted; Hudmon, Andy; Lai, Yvonne; Berbari, Nicolas; Meyer, JasonExcitotoxicity, a major hallmark of neurodegeneration associated with cerebral ischemia, is a result of accumulation of extracellular glutamate. This excess glutamate leads to hyperactivation of glutamate receptors such as the N-methyl-D-asparate (NMDA) receptors (NMDARs) following the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPARs). Excessive activation of NMDARs causes an influx of calcium, which can eventually activate apoptotic pathways and lead to death of neurons. Regulation of NMDAR subunit composition, localization, surface expression, and activity can balance cell survival via activation of either pro-death or pro-survival pathways after a course of an ischemic insult. Specifically, phosphorylation of different NMDAR subunits defines their activity and downstream signaling pathways. NMDARs are phosphorylated by multiple kinases and dephosphorylated by different phosphatases. Besides phosphatases and kinases, per se, phosphorylation of synaptic proteins that regulate kinase or phosphatase targeting and activity also mediate NMDAR phosphorylation. Spinophilin, a major synaptic scaffolding and protein phosphatase 1 (PP1) targeting protein, mediates substrate phosphorylation via its ability to bind PP1. Our studies focus on delineating the role of spinophilin in the regulation of phosphorylation and function of the GluN2B subunit of the NMDA receptor as well as the role of spinophilin in modulating glutamate-induced neurotoxicity. Interestingly, our data demonstrate that spinophilin sequesters PP1 away from GluN2B thereby enhancing phosphorylation of GluN2B at Ser-1284. These changes impact GluN2B protein interactions, subcellular localization, and surface expression, leading to alterations in the amount of calcium entering the neuron via GluN2B-containing NMDARs. Our data show that spinophilin biphasically regulates GluN2B function. Specifically, Ser-1284 phosphorylation enhances calcium influx through GluN2B containing NMDA receptors, but spinophilin leads to dramatic decreases in the surface expression of the receptor independent of Ser-1284 phosphorylation. Moreover, in spinophilin knockout mice, we observe less PP1 binding to GluN2B and less phosphorylation of Ser-1284, but more surface expression of GluN2B and greater levels of caspase activity. Together, these observations suggest a potential neuroprotective role for spinophilin by decreasing GluN2B-containing NMDA receptor-dependent surface expression and thereby decreasing intracellular calcium and neuronal cell death.