- Browse by Subject
Browsing by Subject "Spinal muscular atrophy"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Characterization of Reference Materials for Spinal Muscular Atrophy Genetic Testing: A Genetic Testing Reference Materials Coordination Program Collaborative Project(Elsevier, 2021) Prior, Thomas W.; Bayrak-Toydemir, Pinar; Lynnes, Ty C.; Mao, Rong; Metcalf, James D.; Muralidharan, Kasinathan; Iwata-Otsubo, Aiko; Pham, Ha T.; Pratt, Victoria M.; Qureshi, Shumaila; Requesens, Deborah; Shen, Junqing; Vetrini, Francesco; Kalman, Lisa; Medicine, School of MedicineSpinal muscular atrophy (SMA) is an autosomal recessive disorder predominately caused by bi-allelic loss of the SMN1 gene. Increased copies of SMN2, a low functioning nearly identical paralog, are associated with a less severe phenotype. SMA was recently recommended for inclusion in newborn screening. Clinical laboratories must accurately measure SMN1 and SMN2 copy number to identify SMA patients and carriers, and to identify individuals likely to benefit from therapeutic interventions. Having publicly available and appropriately characterized reference materials with various combinations of SMN1 and SMN2 copy number variants is critical to assure accurate SMA clinical testing. To address this need, the CDC-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the genetic testing community and the Coriell Institute for Medical Research, has characterized 15 SMA reference materials derived from publicly available cell lines. DNA samples were distributed to four volunteer testing laboratories for genotyping using three different methods. The characterized samples had zero to four copies of SMN1 and zero to five copies SMN2. The samples also contained clinically important allele combinations (eg, zero copies SMN1, three copies SMN2), and several had markers indicative of an SMA carrier. These and other reference materials characterized by the Genetic Testing Reference Materials Coordination Program are available from the Coriell Institute and are proposed to support the quality of clinical laboratory testing.Item COPI coatomer subunit α-COP interacts with the RNA binding protein Nucleolin via a C-terminal dilysine motif(Oxford University Press, 2023) Custer, Sara K.; Gilson, Timra; Astroski, Jacob W.; Nanguneri, Siddarth R.; Iurillo, Alyssa M.; Androphy, Elliot J.; Dermatology, School of MedicineThe COPI coatomer subunit α-COP has been shown to co-precipitate mRNA in multiple settings, but it was unclear whether the interaction with mRNA was direct or mediated by interaction with an adapter protein. The COPI complex often interacts with proteins via C-terminal dilysine domains. A search for candidate RNA binding proteins with C-terminal dilysine motifs yielded Nucleolin, which terminates in a KKxKxx sequence. This protein was an especially intriguing candidate as it has been identified as an interacting partner for Survival Motor Neuron protein (SMN). Loss of SMN causes the neurodegenerative disease Spinal Muscular Atrophy. We have previously shown that SMN and α-COP interact and co-migrate in axons, and that overexpression of α-COP reduced phenotypic severity in cell culture and animal models of SMA. We show here that in an mRNA independent manner, endogenous Nucleolin co-precipitates endogenous α-COP and ε-COP but not β-COP which may reflect an interaction with the so-called B-subcomplex rather a complete COPI heptamer. The ability of Nucleolin to bind to α-COP requires the presence of the C-terminal KKxKxx domain of Nucleolin. Furthermore, we have generated a point mutant in the WD40 domain of α-COP which eliminates its ability to co-precipitate Nucleolin but does not interfere with precipitation of partners mediated by non-KKxKxx motifs such as the kainate receptor subunit 2. We propose that via interaction between the C-terminal dilysine motif of Nucleolin and the WD40 domain of α-COP, Nucleolin acts an adaptor to allow α-COP to interact with a population of mRNA.Item Differential regulation of the SMN2 gene by individual HDAC proteins(Elsevier, 2011-10-14) Evans, Matthew C.; Cherry, Jonathan J.; Androphy, Elliot J.; Dermatology, School of MedicineSpinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder that is the leading genetic cause of infantile death. SMA is caused by homozygous deletion or mutation of the survival of motor neuron 1 gene (SMN1). The SMN2 gene is nearly identical to SMN1, however is alternatively spliced. The close relationship to SMN1 results in SMN2 being a very power genetic modifier of SMA disease severity and a target for therapies. We sought to identify the regulatory role individual HDAC proteins use to control expression of full length protein from the SMN2 genes. We used quantitative PCR to determine the effects shRNA silencing of individual HDACs on the steady state levels of a SMN2-luciferase reporter transcripts. We determined that reduction of individual HDAC proteins was sufficient to increase SMN protein levels in a transgenic reporter system. Knockdown of class I HDAC proteins preferentially activated the reporter by increased promoter transcription. Silencing of class II HDAC proteins maintained transcriptional activity; however silencing of HDAC 5 and 6 also appeared to enhance inclusion of an alternatively spliced exon. This work highlights HDAC proteins 2 and 6 as excellent investigative targets. These data are important to the basic understanding of SMN expression regulation and the refinements of current therapeutic compounds as well as the development of novel SMA therapeutics.Item How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy(Nature Publishing group, 2017-09) Singh, Natalia N.; Howell, Matthew D.; Androphy, Elliot J.; Singh, Ravindra N.; Dermatology, School of MedicineSpinal muscular atrophy (SMA), a prominent genetic disease of infant mortality, is caused by low levels of survival motor neuron (SMN) protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1 present in humans, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7 during pre-mRNA splicing. With the recent FDA approval of nusinersen (Spinraza™), the potential for correction of SMN2 exon 7 splicing as a SMA therapy has been affirmed. Nusinersen is an antisense oligonucleotide that targets intronic splicing silencer N1 (ISS-N1) discovered in 2004 at the University of Massachusetts Medical School. ISS-N1 has emerged as the model target for testing the therapeutic efficacy of antisense oligonucleotides using different chemistries as well as different mouse models of SMA. Here we provide a historical account of events that led to the discovery of ISS-N1 and describe the impact of independent validations that raised the profile of ISS-N1 as one of the most potent antisense targets for the treatment of a genetic disease. Recent approval of nusinersen provides a much-needed boost for antisense technology that is just beginning to realize its potential. Beyond treating SMA, the ISS-N1 target offers myriad potentials for perfecting various aspects of the nucleic-acid-based technology for the amelioration of the countless number of pathological conditions.