- Browse by Subject
Browsing by Subject "Space"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Effect of Carbon Dioxide on the Twinkling Artifact in Ultrasound Imaging of Kidney Stones: A Pilot Study(Elsevier, 2017-05) Simon, Julianna C.; Wang, Yak-Nam; Cunitz, Bryan W.; Thiel, Jeffrey; Starr, Frank; Liu, Ziyue; Bailey, Michael R.; Biostatistics, School of Public HealthBone demineralization, dehydration and stasis put astronauts at increased risk of forming kidney stones in space. The color-Doppler ultrasound "twinkling artifact," which highlights kidney stones with color, can make stones readily detectable with ultrasound; however, our previous results suggest twinkling is caused by microbubbles on the stone surface which could be affected by the elevated levels of carbon dioxide found on space vehicles. Four pigs were implanted with kidney stones and imaged with ultrasound while the anesthetic carrier gas oscillated between oxygen and air containing 0.8% carbon dioxide. On exposure of the pigs to 0.8% carbon dioxide, twinkling was significantly reduced after 9-25 min and recovered when the carrier gas returned to oxygen. These trends repeated when pigs were again exposed to 0.8% carbon dioxide followed by oxygen. The reduction of twinkling caused by exposure to elevated carbon dioxide may make kidney stone detection with twinkling difficult in current space vehicles.Item Gene-metabolite networks associated with impediment of bone fracture repair in spaceflight(Elsevier, 2021-06-08) Chakraborty, Nabarun; Zamarioli, Ariane; Gautam, Aarti; Campbell, Ross; Mendenhall, Stephen K.; Childress, Paul J.; Dimitrov, George; Sowe, Bintu; Tucker, Aamir; Zhao, Liming; Hammamieh, Rasha; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineAdverse effects of spaceflight on musculoskeletal health increase the risk of bone injury and impairment of fracture healing. Its yet elusive molecular comprehension warrants immediate attention, since space travel is becoming more frequent. Here we examined the effects of spaceflight on bone fracture healing using a 2 mm femoral segmental bone defect (SBD) model. Forty, 9-week-old, male C57BL/6J mice were randomized into 4 groups: 1) Sham surgery on Ground (G-Sham); 2) Sham surgery housed in Spaceflight (FLT-Sham); 3) SBD surgery on Ground (G-Surgery); and 4) SBD surgery housed in Spaceflight (FLT-Surgery). Surgery procedures occurred 4 days prior to launch; post-launch, the spaceflight mice were house in the rodent habitats on the International Space Station (ISS) for approximately 4 weeks before euthanasia. Mice remaining on the Earth were subjected to identical housing and experimental conditions. The right femur from half of the spaceflight and ground groups was investigated by micro-computed tomography (µCT). In the remaining mice, the callus regions from surgery groups and corresponding femoral segments in sham mice were probed by global transcriptomic and metabolomic assays. µCT confirmed escalated bone loss in FLT-Sham compared to G-Sham mice. Comparing to their respective on-ground counterparts, the morbidity gene-network signal was inhibited in sham spaceflight mice but activated in the spaceflight callus. µCT analyses of spaceflight callus revealed increased trabecular spacing and decreased trabecular connectivity. Activated apoptotic signals in spaceflight callus were synchronized with inhibited cell migration signals that potentially hindered the wound site to recruit growth factors. A major pro-apoptotic and anti-migration gene network, namely the RANK-NFκB axis, emerged as the central node in spaceflight callus. Concluding, spaceflight suppressed a unique biomolecular mechanism in callus tissue to facilitate a failed regeneration, which merits a customized intervention strategy.Item Lattice and Momentum Space Approach to Bound States and Excitonic Condensation via User Friendly Interfaces(2012-03-20) Jamell, Christopher Ray; Joglekar, Yogesh; Decca, Ricardo; Nageswara Rao, B. D.; Cheng, Ruihua; Hu, JiangpingIn this thesis, we focus on two broad categories of problems, exciton condensation and bound states, and two complimentary approaches, real and momentum space, to solve these problems. In chapter 2 we begin by developing the self-consistent mean field equations, in momentum space, used to calculate exciton condensation in semiconductor heterostructures/double quantum wells and graphene. In the double quantum well case, where we have one layer containing electrons and the other layer with holes separated by a distance $d$, we extend the analytical solution to the two dimensional hydrogen atom in order to provide a semi-quantitative measure of when a system of excitons can be considered dilute. Next we focus on the problem of electron-electron screening, using the random phase approximation, in double layer graphene. The literature contains calculations showing that when screening is not taken into account the temperature at which excitons in double layer graphene condense is approximately room temperature. Also in the literature is a calculation showing that under certain assumptions the transition temperature is approximately \unit{mK}. The essential result is that the condensate is exponentially suppressed by the number of electron species in the system. Our mean field calculations show that the condensate, is in fact, not exponentially suppressed. Next, in chapter 3, we show the use of momentum space to solve the Schr\"{o}dinger equation for a class of potentials that are not usually a part of a quantum mechanics courses. Our approach avoids the typical pitfalls that exist when one tries to discretize the real space Schr\"{o}dinger equation. This technique widens the number of problems that can presented in an introductory quantum mechanics course while at the same time, because of the ease of its implementation, provides a simple introduction to numerical techniques and programming in general to students. We have furthered this idea by creating a modular program that allows students to choose the potential they wish to solve for while abstracting away the details of how the solution is found. In chapter 4 we revisit the single exciton and exciton condensation in double layer graphene problems through the use of real space lattice models. In the first section, we once again develop the equations needed to solve the problem of exciton condensation in a double layer graphene system. In addition to this we show that by using this technique, we find that for a non-interacting system with a finite non-zero tunneling between the layers that the on-site exciton density is proportional to the tunneling amplitude. The second section returns to the single exciton problem. In agreement with our momentum space calculations, we find that as the layer separation distance is increased the bound state wave function broadens. Finally, an interesting consequence of the lattice model is explored briefly. We show that for a system containing an electron in a periodic potential, there exists a bound state for both an attractive as well as repulsive potential. The bound state for the repulsive potential has as its energy $-E_0$ where $E_0$ is the ground state energy of the attractive potential with the same strength.