- Browse by Subject
Browsing by Subject "Soybean"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A novel Synthetic phenotype association study approach reveals the landscape of association for genomic variants and phenotypes(Elsevier, 2022) Škrabišová, Mária; Dietz, Nicholas; Zeng, Shuai; Chan, Yen On; Wang, Juexin; Liu, Yang; Biová, Jana; Joshi, Trupti; Bilyeu, Kristin D.; Medical and Molecular Genetics, School of MedicineIntroduction: Genome-Wide Association Studies (GWAS) identify tagging variants in the genome that are statistically associated with the phenotype because of their linkage disequilibrium (LD) relationship with the causative mutation (CM). When both low-density genotyped accession panels with phenotypes and resequenced data accession panels are available, tagging variants can assist with post-GWAS challenges in CM discovery. Objectives: Our objective was to identify additional GWAS evaluation criteria to assess correspondence between genomic variants and phenotypes, as well as enable deeper analysis of the localized landscape of association. Methods: We used genomic variant positions as Synthetic phenotypes in GWAS that we named "Synthetic phenotype association study" (SPAS). The extreme case of SPAS is what we call an "Inverse GWAS" where we used CM positions of cloned soybean genes. We developed and validated the Accuracy concept as a measure of the correspondence between variant positions and phenotypes. Results: The SPAS approach demonstrated that the genotype status of an associated variant used as a Synthetic phenotype enabled us to explore the relationships between tagging variants and CMs, and further, that utilizing CMs as Synthetic phenotypes in Inverse GWAS illuminated the landscape of association. We implemented the Accuracy calculation for a curated accession panel to an online Accuracy calculation tool (AccuTool) as a resource for gene identification in soybean. We demonstrated our concepts on three examples of soybean cloned genes. As a result of our findings, we devised an enhanced "GWAS to Genes" analysis (Synthetic phenotype to CM strategy, SP2CM). Using SP2CM, we identified a CM for a novel gene. Conclusion: The SP2CM strategy utilizing Synthetic phenotypes and the Accuracy calculation of correspondence provides crucial information to assist researchers in CM discovery. The impact of this work is a more effective evaluation of landscapes of GWAS associations.Item The Ethylene Signaling Pathway Negatively Impacts CBF/DREB-Regulated Cold Response in Soybean (Glycine max)(Frontiers, 2019) Robison, Jennifer D.; Yamasaki, Yuji; Randall, Stephen K.; Biology, School of ScienceDuring cold stress, soybean CBF/DREB1 transcript levels increase rapidly; however, expected downstream targets appear unresponsive. Here we asked whether the ethylene signaling pathway, which is enhanced in the cold can negatively regulate the soybean CBF/DREB1 cold responsive pathway; thus contributing to the relatively poor cold tolerance of soybean. Inhibition of the ethylene signaling pathway resulted in a significant increase in GmDREB1A;1 and GmDREB1A;2 transcripts, while stimulation led to decreased GmDREB1A;1 and GmDREB1B;1 transcripts. A cold responsive reporter construct (AtRD29Aprom::GFP/GUS), as well as predicted downstream targets of soybean CBF/DREB1 [ Glyma.12g015100 (ADH), Glyma.14g212200 (ubiquitin ligase), Glyma.05g186700 (AP2), and Glyma.19g014600 (CYP)] were impacted by the modulation of the ethylene signaling pathway. Photosynthetic parameters were affected by ethylene pathway stimulation, but only at control temperatures. Freezing tolerance (as measured by electrolyte leakage), free proline, and MDA; in both acclimated and non-acclimated plants were increased by silver nitrate but not by other ethylene pathway inhibitors. This work provides evidence that the ethylene signaling pathway, possibly through the action of EIN3, transcriptionally inhibits the CBF/DREB1 pathway in soybean.Item Molecular and Physiological Responses of Soybean (Glycine max) to Cold and the Stress Hormone Ethylene(2019-05) Robison, Jennifer Dawn; Randall, Stephen K.; Balakrishnan, Lata; Watson, John C.; Blacklock, Brenda J.Abiotic stresses, such as cold, are serious agricultural problems resulting in substantial crop and revenue losses. Soybean (Glycine max) is an important worldwide crop for food, feed, fuel, and other products. Soybean has long been considered to be cold-intolerant and incapable of cold acclimation. In contrast to these reports, this study demonstrates that cold acclimation improved freezing tolerance in the domestic soybean cultivar ‘Williams 82’ with 50% enhancement of freezing tolerance after 5.2 +\- 0.6 days of cold exposure. Decreases in light dependent photosynthetic function and efficiency accompanied cold treatment. These decreases were due to an increase in photon dissipation likely driven by a decrease in plastoquinone (PQ) pool size limiting electron flow from photosystem II (PSII) to photosystem I (PSI). Cold-induced damage to operational photosynthesis began at 25 minutes of cold exposure and maximal photosynthesis was disrupted after 6 to 7 hours of cold exposure. Cold exposure caused severe photodamage leading to the loss of PSII reaction centers and photosynthetic efficiency. Comparisons of eight cultivars of G. max demonstrated a weak correlation between cold acclimation and northern cultivars versus southern cultivars. In the non-domesticated soybean species Glycine soja, the germination rate after cold imbibition was positively correlated with seedling cold acclimation potential. However, the overall cold acclimation potential in G. soja was equal to that of domestic soybean G. max reducing the enthusiasm for the “wild” soybean as an additional source of genetic diversity for cold tolerance. Despite being relatively cold intolerant, the soybean genome possesses homologs of the major cold responsive CBF/DREB1 transcription factors. These genes are cold-induced in soybean in a similar pattern to that of the cold tolerant model plant species Arabidopsis thaliana. In Arabidopsis, EIN3, a major component of the ethylene signaling pathway, is a negative transcriptional regulator of CBF/DREB1. In contrast to AtEIN3 transcript levels which do not change during cold treatment in Arabidopsis, we observed a cold-dependent 3.6 fold increase in GmEIN3 transcript levels in soybean. We hypothesized that this increase could prevent effective CBF/DREB1 cold regulation in soybean. Analysis of our newly developed cold responsive reporter (AtRD29Aprom::GFP/GUS) soybean transgenic lines demonstrated that inhibition of the ethylene pathway via foliar sprays (AVG, 1-MCP, and silver nitrate) resulted in significant cold-induced GUS activity. Transcripts of GmEIN3A;1 increased in response to ethylene pathway stimulation (ACC and ethephon) and decreased in response to ethylene pathway inhibition in the cold. Additionally, in the cold, inhibition of the ethylene pathway resulted in a significant increase in transcripts of GmDREB1A;1 and GmDREB1A;2 and stimulation of the ethylene pathway led to a decrease in GmDREB1A;1 and GmDREB1B;1 transcripts. To assess the physiological effects of these transcriptional changes; electrolyte leakage, lipid oxidation, free proline content, and photosynthesis were examined. Improvement in electrolyte leakage, a measure of freezing tolerance, was seen only under silver nitrate treatment. Only 1-MCP treatment resulted in significantly decreased lipid oxidation. Transcripts for CBF/DREB1 downstream targets (containing the consensus CRT/DRE motifs) significantly decreased in plants treated with ethylene pathway stimulators in the cold; however, ethylene pathway inhibition generally produced no increase over basal cold levels. To identify if GmEIN3A;1 was capable of binding to GmDREB1 promoters, the negative regulator GmEIN3A;1 and the positive regulator GmICE1A were cloned and expressed in Escherichia coli (E. coli). Preliminary binding results indicated that GmEIN3A;1 can bind to a double stranded section of the GmDREB1A;1 promoter containing putative EIN3 and ICE1 binding sites. GmICE1A is capable of binding to the same section of the GmDREB1A;1 promoter, though only when single stranded. Additional experiments will be required to demonstrate that GmEIN3A;1 and GmICE1A are capable of binding to the GmDREB1A;1 promoter and this work provides the tools to answer these questions. Overall, this work provides evidence that the ethylene pathway transcriptionally inhibits the CBF/DREB1 pathway in soybean through the action of GmEIN3A;1. Yet when GmCBF/DREB1 transcripts are upregulated by ethylene pathway inhibition, no consistent change in downstream targets was observed. These data indicate that the limitation in cold tolerance in soybean is due to a yet unidentified target downstream of CBF/DREB1 transcription.Item Safety and Tolerability of Whole Soybean Products: A Dose-Escalating Clinical Trial in Older Adults with Obesity(MDPI, 2023-04-16) Rebello, Candida J.; Boué, Stephen; Levy, Ronald J., Jr.; Puyau, Renée; Beyl, Robbie A.; Greenway, Frank L.; Heiman, Mark L.; Keller, Jeffrey N.; Reynolds, Charles F., III; Kirwan, John P.; Biology, School of ScienceSoybean products have nutrients, dietary fiber, and phytoalexins beneficial for cardiovascular and overall health. Despite their high consumption in Asian populations, their safety in Western diets is debated. We conducted a dose-escalating clinical trial of the safety and tolerability of soybean products in eight older adults (70-85 years) with obesity. Whole green soybean pods grown under controlled conditions were processed to flour (WGS) at the United States Department of Agriculture using common cooking techniques such as slicing and heat treatment. WGS incorporated into food products was consumed at 10 g, 20 g, and 30 g/day for one week at each dose. The gastrointestinal outcomes, clinical biomarkers, and adverse events were evaluated. We explored the stimulation of phytoalexin (glyceollin) production in live viable soybean seeds (LSS-G). We compared the compositions of WGS and LSS-G with commercial soybean flour and its fermented and enzymatically hydrolyzed forms. We found that although 30 g WSG was well-tolerated, and it made participants feel full. Our processing produced glyceollins (267 µg/g) in LSS-G. Processing soybean flour decreased the iron content, but reduced the oligosaccharides, which could attenuate flatulence. Providing soybean flour at <30 g/day may be prudent for overall health and to prevent the exclusion of other food groups and nutrients in older adults with obesity.