- Browse by Subject
Browsing by Subject "Somatosensory cortex"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Imaging Neural Activity in the Primary Somatosensory Cortex Using Thy1-GCaMP6s Transgenic Mice(Journal of Visualized Experiments (JoVE), 2019-01-07) Lin, Xiaojing; Zhao, Tingbao; Xiong, Wenhui; Wen, Shaonan; Jin, Xiaoming; Xu, Xiao-Ming; Neurological Surgery, School of MedicineThe mammalian brain exhibits marked symmetry across the sagittal plane. However, detailed description of neural dynamics in symmetric brain regions in adult mammalian animals remains elusive. In this study, we describe an experimental procedure for measuring calcium dynamics through dual optical windows above bilateral primary somatosensory corticies (S1) in Thy1-GCaMP6s transgenic mice using 2-photon (2P) microscopy. This method enables recordings and quantifications of neural activity in bilateral mouse brain regions one at a time in the same experiment for a prolonged period in vivo. Key aspects of this method, which can be completed within an hour, include minimally invasive surgery procedures for creating dual optical windows, and the use of 2P imaging. Although we only demonstrate the technique in the S1 area, the method can be applied to other regions of the living brain facilitating the elucidation of structural and functional complexities of brain neural networks.Item Partial information decomposition reveals that synergistic neural integration is greater downstream of recurrent information flow in organotypic cortical cultures(Public Library of Science, 2021-07-12) Sherrill, Samantha P.; Timme, Nicholas M.; Beggs, John M.; Newman, Ehren L.; Psychology, School of ScienceThe directionality of network information flow dictates how networks process information. A central component of information processing in both biological and artificial neural networks is their ability to perform synergistic integration-a type of computation. We established previously that synergistic integration varies directly with the strength of feedforward information flow. However, the relationships between both recurrent and feedback information flow and synergistic integration remain unknown. To address this, we analyzed the spiking activity of hundreds of neurons in organotypic cultures of mouse cortex. We asked how empirically observed synergistic integration-determined from partial information decomposition-varied with local functional network structure that was categorized into motifs with varying recurrent and feedback information flow. We found that synergistic integration was elevated in motifs with greater recurrent information flow beyond that expected from the local feedforward information flow. Feedback information flow was interrelated with feedforward information flow and was associated with decreased synergistic integration. Our results indicate that synergistic integration is distinctly influenced by the directionality of local information flow.Item Sex-Dependent Synaptic Remodeling of the Somatosensory Cortex in Mice With Prenatal Methadone Exposure(Frontiers Media, 2022) Grecco, Gregory G.; Huang, Jui Yen; Muñoz, Braulio; Doud, Emma H.; Hines, Caliel D.; Gao, Yong; Rodriguez, Brooke; Mosley, Amber L.; Lu, Hui-Chen; Atwood, Brady K.; Pharmacology and Toxicology, School of MedicineRising opioid use among pregnant women has led to a growing population of neonates exposed to opioids during the prenatal period, but how opioids affect the developing brain remains to be fully understood. Animal models of prenatal opioid exposure have discovered deficits in somatosensory behavioral development that persist into adolescence suggesting opioid exposure induces long lasting neuroadaptations on somatosensory circuitry such as the primary somatosensory cortex (S1). Using a mouse model of prenatal methadone exposure (PME) that displays delays in somatosensory milestone development, we performed an un-biased multi-omics analysis and investigated synaptic functioning in the primary somatosensory cortex (S1), where touch and pain sensory inputs are received in the brain, of early adolescent PME offspring. PME was associated with numerous changes in protein and phosphopeptide abundances that differed considerably between sexes in the S1. Although prominent sex effects were discovered in the multi-omics assessment, functional enrichment analyses revealed the protein and phosphopeptide differences were associated with synapse-related cellular components and synaptic signaling-related biological processes, regardless of sex. Immunohistochemical analysis identified diminished GABAergic synapses in both layer 2/3 and 4 of PME offspring. These immunohistochemical and proteomic alterations were associated with functional consequences as layer 2/3 pyramidal neurons revealed reduced amplitudes and a lengthened decay constant of inhibitory postsynaptic currents. Lastly, in addition to reduced cortical thickness of the S1, cell-type marker analysis revealed reduced microglia density in the upper layer of the S1 that was primarily driven by PME females. Taken together, our studies show the lasting changes on synaptic function and microglia in S1 cortex caused by PME in a sex-dependent manner.