- Browse by Subject
Browsing by Subject "Snapback configuration"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Satellite Subgenomic Particles Are Key Regulators of Adeno-Associated Virus Life Cycle(MDPI, 2021-06-21) Zhang, Junping; Yu, Xiangping; Guo, Ping; Firrman, Jenni; Pouchnik, Derek; Diao, Yong; Samulski, Richard Jude; Xiao, Weidong; Pediatrics, School of MedicineHistorically, adeno-associated virus (AAV)-defective interfering particles (DI) were known as abnormal virions arising from natural replication and encapsidation errors. Through single virion genome analysis, we revealed that a major category of DI particles contains a double-stranded DNA genome in a "snapback" configuration. The 5'- snapback genomes (SBGs) include the P5 promoters and partial rep gene sequences. The 3'-SBGs contains the capsid region. The molecular configuration of 5'-SBGs theoretically may allow double-stranded RNA transcription in their dimer configuration. Our studies demonstrated that 5-SBG regulated AAV rep expression and improved AAV packaging. In contrast, 3'-SBGs at its dimer configuration increased levels of cap protein. The generation and accumulation of 5'-SBGs and 3'-SBGs appears to be coordinated to balance the viral gene expression level. Therefore, the functions of 5'-SBGs and 3'-SBGs may help maximize the yield of AAV progenies. We postulate that AAV virus population behaved as a colony and utilizes its subgenomic particles to overcome the size limit of a viral genome and encodes additional essential functions.