ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Sitagliptin Phosphate"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Dipeptidyl Peptidase 4 Inhibition for Prophylaxis of Acute Graft-versus-Host Disease
    (Massachusetts Medical Society, 2021-01-07) Farag, Sherif S.; Zaid, Mohammad Abu; Schwartz, Jennifer E.; Thakrar, Teresa C.; Blakley, Ann J.; Abonour, Rafat; Robertson, Michael J.; Broxmeyer, Hal E.; Zhang, Shuhong; Medicine, School of Medicine
    Background: Dipeptidyl peptidase 4 (DPP-4; also known as CD26), a transmembrane receptor expressed on T cells, has a costimulatory function in activating T cells. In a mouse model, down-regulation of CD26 prevented graft-versus-host disease (GVHD) but preserved graft-versus-tumor effects. Whether inhibition of DPP-4 with sitagliptin may prevent acute GVHD after allogeneic stem-cell transplantation is not known. Methods: We conducted a two-stage, phase 2 clinical trial to test whether sitagliptin plus tacrolimus and sirolimus would reduce the incidence of grade II to IV acute GVHD from 30% to no more than 15% by day 100. Patients received myeloablative conditioning followed by mobilized peripheral-blood stem-cell transplants. Sitagliptin was given orally at a dose of 600 mg every 12 hours starting the day before transplantation until day 14 after transplantation. Results: A total of 36 patients who could be evaluated, with a median age of 46 years (range, 20 to 59), received transplants from matched related or unrelated donors. Acute GVHD occurred in 2 of 36 patients by day 100; the incidence of grade II to IV GVHD was 5% (95% confidence interval [CI], 1 to 16), and the incidence of grade III or IV GVHD was 3% (95% CI, 0 to 12). Nonrelapse mortality was zero at 1 year. The 1-year cumulative incidences of relapse and chronic GVHD were 26% (95% CI, 13 to 41) and 37% (95% CI, 22 to 53), respectively. GVHD-free, relapse-free survival was 46% (95% CI, 29 to 62) at 1 year. Toxic effects were similar to those seen in patients undergoing allogeneic stem-cell transplantation. Conclusions: In this nonrandomized trial, sitagliptin in combination with tacrolimus and sirolimus resulted in a low incidence of grade II to IV acute GVHD by day 100 after myeloablative allogeneic hematopoietic stem-cell transplantation.
  • Loading...
    Thumbnail Image
    Item
    Modeling Sitagliptin Effect on Dipeptidyl Peptidase 4 (DPP4) Activity in Adults with Hematological Malignancies After Umbilical Cord Blood (UCB) Hematopoietic Cell Transplant (HCT)
    (Springer International Publishing, 2014-03) Vélez de Mendizábal, Nieves; Strother, Robert M.; Farag, Sherif S.; Broxmeyer, Hal E.; Messina-Graham, Steven; Chitnis, Shripad D.; Bies, Robert R.; Department of Medicine, IU School of Medicine
    Background and Objectives— Dipeptidyl peptidase-4 (DPP4) inhibition is a potential strategy to increase the engraftment rate of hematopoietic stem/progenitor cells. A recent clinical trial using sitagliptin, a DPP4 inhibitor approved for type 2 diabetes mellitus, has shown to be a promising approach in adults with hematological malignancies after umbilical cord blood (UCB) hematopoietic cell transplant (HCT). Based on data from this clinical trial, a semi-mechanistic model was developed to simultaneously describe DPP4 activity after multiple doses of sitagliptin in subjects with hematological malignancies after a single-unit UCB HCT. Methods— The clinical study included 24 patients that received myeloablative conditioning followed by 4 oral sitagliptin 600mg with single-unit UCB HCT. Using a nonlinear mixed effects approach, a semi-mechanistic pharmacokinetic/pharmacodynamic model was developed to describe DPP4 activity from this trial data using NONMEM 7.2. The model was used to drive Monte-Carlo simulations to probe various dosage schedules and the attendant DPP4 response. Results— The disposition of sitagliptin in plasma was best described by a 2-compartment model. The relationship between sitagliptin concentration and DPP4 activity was best described by an indirect response model with a negative feedback loop. Simulations showed that twice a day or three times a day dosage schedules were superior to once daily schedule for maximal DPP4 inhibition at the lowest sitagliptin exposure. Conclusion— This study provides the first pharmacokinetic/pharmacodynamic model of sitagliptin in the context of HCT, and provides a valuable tool for exploration of optimal dosing regimens, critical for improving time to engraftment in patients after UCB HCT.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University