ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Signaling nodes"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Predictive biomarker modeling of pediatric atopic dermatitis severity based on longitudinal serum collection
    (Oxford University Press, 2021) Engle, Sarah M.; Chang, Ching-Yun; Ulrich, Benjamin J.; Satterwhite, Allyson; Hayes, Tristan; Robling, Kim; Sissons, Sean E.; Schmitz, Jochen; Tepper, Robert S.; Kaplan, Mark H.; Sims, Jonathan T.; Microbiology and Immunology, School of Medicine
    The pathogenesis of atopic dermatitis (AD) results from complex interactions between environmental factors, barrier defects, and immune dysregulation resulting in systemic inflammation. Therefore, we sought to characterize circulating inflammatory profiles in pediatric AD patients and identify potential signaling nodes which drive disease heterogeneity and progression. We analyzed a sample set of 87 infants that were at high risk for atopic disease based on atopic dermatitis diagnoses. Clinical parameters, serum, and peripheral blood mononuclear cells (PBMCs) were collected upon entry, and at one and four years later. Within patient serum, 126 unique analytes were measured using a combination of multiplex platforms and ultrasensitive immunoassays. We assessed the correlation of inflammatory analytes with AD severity (SCORAD). Key biomarkers, such as IL-13 (rmcorr=0.47) and TARC/CCL17 (rmcorr=0.37), among other inflammatory signals, significantly correlated with SCORAD across all timepoints in the study. Flow cytometry and pathway analysis of these analytes implies that CD4 T cell involvement in type 2 immune responses were enhanced at the earliest time point (year 1) relative to the end of study collection (year 5). Importantly, forward selection modeling identified 18 analytes in infant serum at study entry which could be used to predict change in SCORAD four years later. We have identified a pediatric AD biomarker signature linked to disease severity which will have predictive value in determining AD persistence in youth and provide utility in defining core systemic inflammatory signals linked to pathogenesis of atopic disease.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University