ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Severe Combined Immunodeficiency"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Preclinical Demonstration of Lentiviral Vector-mediated Correction of Immunological and Metabolic Abnormalities in Models of Adenosine Deaminase Deficiency
    (Nature Publishing Group, 2014-03) Carbonaro, Denise A.; Zhang, Lin; Jin, Xiangyang; Montiel-Equihua, Claudia; Geiger, Sabine; Carmo, Marlene; Cooper, Aaron; Fairbanks, Lynette; Kaufman, Michael L.; Sebire, Neil J.; Hollis, Roger P.; Blundell, Michael P.; Senadheera, Shantha; Fu, Pei-Yu; Sahaghian, Arineh; Chan, Rebecca Y.; Wang, Xiaoyan; Cornetta, Kenneth; Thrasher, Adrian J.; Kohn, Donald B.; Gaspar, H. Bobby; Department of Medical & Molecular Genetics, IU School of Medicine
    Gene transfer into autologous hematopoietic stem cells by γ-retroviral vectors (gRV) is an effective treatment for adenosine deaminase (ADA)–deficient severe combined immunodeficiency (SCID). However, current gRV have significant potential for insertional mutagenesis as reported in clinical trials for other primary immunodeficiencies. To improve the efficacy and safety of ADA-SCID gene therapy (GT), we generated a self-inactivating lentiviral vector (LV) with a codon-optimized human cADA gene under the control of the short form elongation factor-1α promoter (LV EFS ADA). In ADA−/− mice, LV EFS ADA displayed high-efficiency gene transfer and sufficient ADA expression to rescue ADA−/− mice from their lethal phenotype with good thymic and peripheral T- and B-cell reconstitution. Human ADA-deficient CD34+ cells transduced with 1–5 × 107 TU/ml had 1–3 vector copies/cell and expressed 1–2x of normal endogenous levels of ADA, as assayed in vitro and by transplantation into immune-deficient mice. Importantly, in vitro immortalization assays demonstrated that LV EFS ADA had significantly less transformation potential compared to gRV vectors, and vector integration-site analysis by nrLAM-PCR of transduced human cells grown in immune-deficient mice showed no evidence of clonal skewing. These data demonstrated that the LV EFS ADA vector can effectively transfer the human ADA cDNA and promote immune and metabolic recovery, while reducing the potential for vector-mediated insertional mutagenesis.
  • Loading...
    Thumbnail Image
    Item
    A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency
    (Elsevier, 2014-04) Lee, Yu Nee; Frugoni, Francesco; Dobbs, Kerry; Walter, Jolan E.; Giliani, Silvia; Gennery, Andrew R.; Al-Herz, Waleed; Haddad, Elie; LeDeist, Francoise; Bleesing, Jack H.; Henderson, Lauren A.; Pai, Sung-Yun; Nelson, Robert P.; El-Ghoneimy, Dalia H.; El-Feky, Reem A.; Reda, Shereen M.; Hossny, Elham; Soler-Palacin, Pere; Fuleihan, Ramsay L.; Patel, Niraj C.; Massaad, Michel J.; Geha, Raif S.; Puck, Jennifer M.; Palma, Paolo; Cancrini, Caterina; Chen, Karin; Vihinen, Mauno; Alt, Frederick W.; Notarangelo, Luigi D.; Department of Medicine, Division of Hematology and Oncology, IU School of Medicine
    Background The recombination-activating gene (RAG) 1/2 proteins play a critical role in the development of T and B cells by initiating the VDJ recombination process that leads to generation of a broad T-cell receptor (TCR) and B-cell receptor repertoire. Pathogenic mutations in the RAG1/2 genes result in various forms of primary immunodeficiency, ranging from T−B− severe combined immune deficiency to delayed-onset disease with granuloma formation, autoimmunity, or both. It is not clear what contributes to such heterogeneity of phenotypes. Objective We sought to investigate the molecular basis for phenotypic diversity presented in patients with various RAG1 mutations. Methods We have developed a flow cytometry–based assay that allows analysis of RAG recombination activity based on green fluorescent protein expression and have assessed the induction of the Ighc locus rearrangements in mouse Rag1−/− pro-B cells reconstituted with wild-type or mutant human RAG1 (hRAG1) using deep sequencing technology. Results Here we demonstrate correlation between defective recombination activity of hRAG1 mutant proteins and severity of the clinical and immunologic phenotype and provide insights on the molecular mechanisms accounting for such phenotypic diversity. Conclusions Using a sensitive assay to measure the RAG1 activity level of 79 mutations in a physiologic setting, we demonstrate correlation between recombination activity of RAG1 mutants and the severity of clinical presentation and show that RAG1 mutants can induce specific abnormalities of the VDJ recombination process.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University