- Browse by Subject
Browsing by Subject "Sentiment Analysis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Security Related and Evidence-Based Holistic Ranking and Composition Framework for Distributed Services(2021-05) Chowdhury, Nahida Sultana; Raje, Rajeev R.; Tuceryan, Mihran; Hill, James; Xia, YuniThe number of smart mobile devices has grown at a significant rate in recent years. This growth has resulted in an exponential number of publicly available mobile Apps. To help the selection of suitable Apps, from various offered choices, the App distribution platforms generally rank/recommend Apps based on average star ratings, the number of installs, and associated reviews ― all the external factors of an App. However, these ranking schemes typically tend to ignore critical internal factors (e.g., bugs, security vulnerabilities, and data leaks) of the Apps. The AppStores need to incorporate a holistic methodology that includes internal and external factors to assign a level of trust to Apps. The inclusion of the internal factors will describe associated potential security risks. This issue is even more crucial with newly available Apps, for which either user reviews are sparse, or the number of installs is still insignificant. In such a scenario, users may fail to estimate the potential risks associated with installing Apps that exist in an AppStore. This dissertation proposes a security-related and evidence-based ranking framework, called SERS (Security-related and Evidence-based Ranking Scheme) to compare similar Apps. The trust associated with an App is calculated using both internal and external factors (i.e., security flaws and user reviews) following an evidence-based approach and applying subjective logic principles. The SERS is formalized and further enhanced in the second part of this dissertation, resulting in its enhanced version, called as E-SERS (Enhanced SERS). These enhancements include an ability to integrate any number of sources that can generate evidence for an App and consider the temporal aspect and reputation of evidence sources. Both SERS and E-SERS are evaluated using publicly accessible Apps from the Google PlayStore and the rankings generated by them are compared with prevalent ranking techniques such as the average star ratings and the Google PlayStore Rankings. The experimental results indicate that E-SERS provides a comprehensive and holistic view of an App when compared with prevalent alternatives. E-SERS is also successful in identifying malicious Apps where other ranking schemes failed to address such vulnerabilities. In the third part of this dissertation, the E-SERS framework is used to propose a trust-aware composition model at two different granularities. This model uses the trust score computed by E-SERS, along with the probability of an App belonging to the malicious category, as the desired attributes for selecting a composition as the two granularities. Finally, the trust-aware composition model is evaluated with the average star rating parameter and the trust score. A holistic approach, as proposed by E-SERS, to computer a trust score will benefit all kinds of Apps including newly published Apps that follow proper security measures but initially struggle in the AppStore rankings due to a lack of a large number of reviews and ratings. Hence, E-SERS will be helpful both to the developers and users. In addition, the composition model that uses such a holistic trust score will enable system integrators to create trust-aware distributed systems for their specific needs.Item Small cohort of patients with epilepsy showed increased activity on Facebook before sudden unexpected death(Elsevier, 2022-03) Wood, Ian B.; Correia, Rion Brattig; Miller, Wendy R.; Rocha, Luis M.; School of NursingSudden Unexpected Death in Epilepsy (SUDEP) remains a leading cause of death in people with epilepsy. Despite the constant risk for patients and bereavement to family members, to date the physiological mechanisms of SUDEP remain unknown. Here we explore the potential to identify putative predictive signals of SUDEP from online digital behavioral data using text and sentiment analysis tools. Specifically, we analyze Facebook timelines of six patients with epilepsy deceased due to SUDEP, donated by surviving family members. We find preliminary evidence for behavioral changes detectable by text and sentiment analysis tools. Namely, in the months preceding their SUDEP event patient social media timelines show: i) increase in verbosity; ii) increased use of functional words; and iii) sentiment shifts as measured by different sentiment analysis tools. Combined, these results suggest that social media engagement, as well as its sentiment, may serve as possible early-warning signals for SUDEP in people with epilepsy. While the small sample of patient timelines analyzed in this study prevents generalization, our preliminary investigation demonstrates the potential of social media data as complementary data in larger studies of SUDEP and epilepsy.