- Browse by Subject
Browsing by Subject "Sentiment analysis"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A Typology of Social Media Use by Human Service Nonprofits: Mixed Methods Study(JMIR, 2024-05-08) Xue, Jia; Shier, Michael L.; Chen, Junxiang; Wang, Yirun; Zheng, Chengda; Chen, Chen; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthBackground: Nonprofit organizations are increasingly using social media to improve their communication strategies with the broader population. However, within the domain of human service nonprofits, there is hesitancy to fully use social media tools, and there is limited scope among organizational personnel in applying their potential beyond self-promotion and service advertisement. There is a pressing need for greater conceptual clarity to support education and training on the varied reasons for using social media to increase organizational outcomes. Objective: This study leverages the potential of Twitter (subsequently rebranded as X [X Corp]) to examine the online communication content within a sample (n=133) of nonprofit sexual assault (SA) centers in Canada. To achieve this, we developed a typology using a qualitative and supervised machine learning model for the automatic classification of tweets posted by these centers. Methods: Using a mixed methods approach that combines machine learning and qualitative analysis, we manually coded 10,809 tweets from 133 SA centers in Canada, spanning the period from March 2009 to March 2023. These manually labeled tweets were used as the training data set for the supervised machine learning process, which allowed us to classify 286,551 organizational tweets. The classification model based on supervised machine learning yielded satisfactory results, prompting the use of unsupervised machine learning to classify the topics within each thematic category and identify latent topics. The qualitative thematic analysis, in combination with topic modeling, provided a contextual understanding of each theme. Sentiment analysis was conducted to reveal the emotions conveyed in the tweets. We conducted validation of the model with 2 independent data sets. Results: Manual annotation of 10,809 tweets identified seven thematic categories: (1) community engagement, (2) organization administration, (3) public awareness, (4) political advocacy, (5) support for others, (6) partnerships, and (7) appreciation. Organization administration was the most frequent segment, and political advocacy and partnerships were the smallest segments. The supervised machine learning model achieved an accuracy of 63.4% in classifying tweets. The sentiment analysis revealed a prevalence of neutral sentiment across all categories. The emotion analysis indicated that fear was predominant, whereas joy was associated with the partnership and appreciation tweets. Topic modeling identified distinct themes within each category, providing valuable insights into the prevalent discussions surrounding SA and related issues. Conclusions: This research contributes an original theoretical model that sheds light on how human service nonprofits use social media to achieve their online organizational communication objectives across 7 thematic categories. The study advances our comprehension of social media use by nonprofits, presenting a comprehensive typology that captures the diverse communication objectives and contents of these organizations, which provide content to expand training and education for nonprofit leaders to connect and engage with the public, policy experts, other organizations, and potential service users.Item Deployment of Compressed MobileNet V3 on iMX RT 1060(IEEE Xplore, 2021-04) Prasad, S. P. Kavyashree; El-Sharkawy, Mohamed; Electrical and Computer Engineering, School of Engineering and TechnologyDeep Neural Networks (DNN) are prominent in most applications today. From self-driving cars, sentiment analysis, surveillance systems, and robotics, they have been used extensively. Among DNNs, Convolutional Neural Networks (CNN) have achieved massive success in computer vision applications as the human visual system inspires their architecture. However, striving to achieve higher accuracies, CNN complexity, parameters, and layers were increased, which led to a drastic surge in their size, making their deployment challenging. Over the years, many researchers have proposed various techniques to alleviate this issue-one of them being Design Space Exploration (DSE) to minimize size and computation with little compromise to accuracy. MobileNet V3 is one such architecture designed to achieve good accuracy while being mindful of resources. It produces an accuracy of 88.93% on CIFAR-10 with a size of 15.3MB. This paper further reduces its size to 2.3MB while boosting its accuracy to 89.13% using DSE techniques. It is then deployed into NXP's i.MX RT1060 Advanced Driver Assistance System (ADAS) platform.Item Tracking COVID-19 Discourse on Twitter in North America: Infodemiology Study Using Topic Modeling and Aspect-Based Sentiment Analysis(JMIR, 2021-02-10) Jang, Hyeju; Rempel, Emily; Roth, David; Carenini, Giuseppe; Janjua, Naveed Zafar; Computer Science, Luddy School of Informatics, Computing, and EngineeringBackground: Social media is a rich source where we can learn about people's reactions to social issues. As COVID-19 has impacted people's lives, it is essential to capture how people react to public health interventions and understand their concerns. Objective: We aim to investigate people's reactions and concerns about COVID-19 in North America, especially in Canada. Methods: We analyzed COVID-19-related tweets using topic modeling and aspect-based sentiment analysis (ABSA), and interpreted the results with public health experts. To generate insights on the effectiveness of specific public health interventions for COVID-19, we compared timelines of topics discussed with the timing of implementation of interventions, synergistically including information on people's sentiment about COVID-19-related aspects in our analysis. In addition, to further investigate anti-Asian racism, we compared timelines of sentiments for Asians and Canadians. Results: Topic modeling identified 20 topics, and public health experts provided interpretations of the topics based on top-ranked words and representative tweets for each topic. The interpretation and timeline analysis showed that the discovered topics and their trend are highly related to public health promotions and interventions such as physical distancing, border restrictions, handwashing, staying home, and face coverings. After training the data using ABSA with human-in-the-loop, we obtained 545 aspect terms (eg, "vaccines," "economy," and "masks") and 60 opinion terms such as "infectious" (negative) and "professional" (positive), which were used for inference of sentiments of 20 key aspects selected by public health experts. The results showed negative sentiments related to the overall outbreak, misinformation and Asians, and positive sentiments related to physical distancing. Conclusions: Analyses using natural language processing techniques with domain expert involvement can produce useful information for public health. This study is the first to analyze COVID-19-related tweets in Canada in comparison with tweets in the United States by using topic modeling and human-in-the-loop domain-specific ABSA. This kind of information could help public health agencies to understand public concerns as well as what public health messages are resonating in our populations who use Twitter, which can be helpful for public health agencies when designing a policy for new interventions.Item Tracking Public Attitudes Toward COVID-19 Vaccination on Tweets in Canada: Using Aspect-Based Sentiment Analysis(JMIR, 2022-03-29) Jang, Hyeju; Rempel, Emily; Roe, Ian; Adu, Prince; Carenini, Giuseppe; Janjua, Naveed Zafar; Computer Science, Luddy School of Informatics, Computing, and EngineeringBackground: The development and approval of COVID-19 vaccines have generated optimism for the end of the COVID-19 pandemic and a return to normalcy. However, vaccine hesitancy, often fueled by misinformation, poses a major barrier to achieving herd immunity. Objective: We aim to investigate Twitter users' attitudes toward COVID-19 vaccination in Canada after vaccine rollout. Methods: We applied a weakly supervised aspect-based sentiment analysis (ABSA) technique, which involves the human-in-the-loop system, on COVID-19 vaccination-related tweets in Canada. Automatically generated aspect and opinion terms were manually corrected by public health experts to ensure the accuracy of the terms and make them more domain-specific. Then, based on these manually corrected terms, the system inferred sentiments toward the aspects. We observed sentiments toward key aspects related to COVID-19 vaccination, and investigated how sentiments toward "vaccination" changed over time. In addition, we analyzed the most retweeted or liked tweets by observing most frequent nouns and sentiments toward key aspects. Results: After applying the ABSA system, we obtained 170 aspect terms (eg, "immunity" and "pfizer") and 6775 opinion terms (eg, "trustworthy" for the positive sentiment and "jeopardize" for the negative sentiment). While manually verifying or editing these terms, our public health experts selected 20 key aspects related to COVID-19 vaccination for analysis. The sentiment analysis results for the 20 key aspects revealed negative sentiments related to "vaccine distribution," "side effects," "allergy," "reactions," and "anti-vaxxer," and positive sentiments related to "vaccine campaign," "vaccine candidates," and "immune response." These results indicate that the Twitter users express concerns about the safety of vaccines but still consider vaccines as the option to end the pandemic. In addition, compared to the sentiment of the remaining tweets, the most retweeted or liked tweets showed more positive sentiment overall toward key aspects (P<.001), especially vaccines (P<.001) and vaccination (P=.009). Further investigation of the most retweeted or liked tweets revealed two opposing trends in Twitter users who showed negative sentiments toward vaccines: the "anti-vaxxer" population that used negative sentiments as a means to discourage vaccination and the "Covid Zero" population that used negative sentiments to encourage vaccinations while critiquing the public health response. Conclusions: Our study examined public sentiments toward COVID-19 vaccination on tweets over an extended period in Canada. Our findings could inform public health agencies to design and implement interventions to promote vaccination.