- Browse by Subject
Browsing by Subject "Sensory processing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Associations between sensory processing and electrophysiological and neurochemical measures in children with ASD: an EEG-MRS study(BMC, 2021-01-06) Pierce, Sarah; Kadlaskar, Girija; Edmondson, David A.; McNally Keehn, Rebecca; Dydak, Ulrike; Keehn, Brandon; Pediatrics, School of MedicineBackground: Autism spectrum disorder (ASD) is associated with hyper- and/or hypo-sensitivity to sensory input. Spontaneous alpha power, which plays an important role in shaping responsivity to sensory information, is reduced across the lifespan in individuals with ASD. Furthermore, an excitatory/inhibitory imbalance has also been linked to sensory dysfunction in ASD and has been hypothesized to underlie atypical patterns of spontaneous brain activity. The present study examined whether resting-state alpha power differed in children with ASD as compared to TD children, and investigated the relationships between alpha levels, concentrations of excitatory and inhibitory neurotransmitters, and atypical sensory processing in ASD. Methods: Participants included thirty-one children and adolescents with ASD and thirty-one age- and IQ-matched typically developing (TD) participants. Resting-state electroencephalography (EEG) was used to obtain measures of alpha power. A subset of participants (ASD = 16; TD = 16) also completed a magnetic resonance spectroscopy (MRS) protocol in order to measure concentrations of excitatory (glutamate + glutamine; Glx) and inhibitory (GABA) neurotransmitters. Results: Children with ASD evidenced significantly decreased resting alpha power compared to their TD peers. MRS estimates of GABA and Glx did not differ between groups with the exception of Glx in the temporal-parietal junction. Inter-individual differences in alpha power within the ASD group were not associated with region-specific concentrations of GABA or Glx, nor were they associated with sensory processing differences. However, atypically decreased Glx was associated with increased sensory impairment in children with ASD. Conclusions: Although we replicated prior reports of decreased alpha power in ASD, atypically reduced alpha was not related to neurochemical differences or sensory symptoms in ASD. Instead, reduced Glx in the temporal-parietal cortex was associated with greater hyper-sensitivity in ASD. Together, these findings may provide insight into the neural underpinnings of sensory processing differences present in ASD.Item Increased Prevalence of Sensory Processing Issues in Pediatric Gastrointestinal Patient Population(Permanente Federation, 2022) Wood, Jessica K.; Garcia, Kara E.; Carey, Rebecca G.; Radiation Oncology, School of MedicineBackground: Sensory processing dysfunction in children has been linked to attention-deficit/hyperactivity disorder, autism, feeding disorders, and functional abdominal pain. However, little is known about sensory processing in the broader pediatric gastroenterology population. Objective: To characterize frequency and type of sensory processing dysfunction seen in pediatric gastroenterology compared to a general pediatric population. Methods: The Short Sensory Profile 2 was administered to the parents of children ranging 3–14 years, being seen in a pediatric gastrointestinal (GI) subspecialty clinic or general pediatric clinic. Short Sensory Profile 2 scores from age- and gender-matched groups were compared with nonparametric statistics. Results: Sensory processing dysfunction was increased in children seen in the GI clinic compared to children in the general pediatric clinic. Short Sensory Profile 2 quadrant analysis revealed greatest differences in avoiding, primarily in young females of the GI population. Conclusion: Children presenting to a pediatric GI clinic demonstrate greater sensory processing dysfunction compared to children in a general pediatric practice.