- Browse by Subject
Browsing by Subject "Sensory neurons"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item Cellular Mechanisms Mediating the Actions of Nerve Growth Factor in Sensory Neurons(2007-08-08T15:24:37Z) Park, Kellie Adrienne; Vasko, Michael R.Nerve growth factor (NGF) is a neurotrophin upregulated with injury and inflammation. Peripheral administration of NGF causes hyperalgesia and allodynia in animals. Blocking NGF signaling reverses these effects. At the cellular level, chronic exposure of sensory neurons to NGF enhances expression the neurotransmitter, calcitonin gene-related peptide (CGRP). Acute exposure to NGF increases capsaicin-evoked CGRP release from sensory neurons in culture. Thus, NGF increases peptide release from neurons by: (1) increasing expression of peptides, and/or (2) altering their sensitivity. The increase in peptide outflow by either mechanism could contribute to development of hyperalgesia and allodynia. The signaling cascades mediating the actions of NGF in sensory neurons are unclear. Therefore, experiments were designed to determine which pathways regulate changes in iCGRP content and evoked release from primary sensory neurons in culture. The Ras/MEK/ERK cascade was identified as a possible regulator of iCGRP expression in response to NGF. To test this pathway, it was manipulated in neurons by (1) expression of dominant negative or constitutively active isoforms of Ras, (2) farnesyltransferase inhibition, (3) manipulation of the RasGAP, synGAP, and (4) blocking MEK activity. When the pathway was blocked, the NGF-induced increase in iCGRP expression was attenuated. When the Ras pathway was activated, iCGRP expression increased. These data indicate that Ras, and downstream signaling kinases, MEK and ERK, regulate the NGF-induced increases in CGRP in sensory neurons. To determine which pathway(s) regulate the increase in capsaicin-evoked iCGRP release upon brief exposure to NGF, the Ras/MEK/ERK pathway was manipulated as described above, and pharmacological inhibitors of the PI3 kinase, PLC, and Src kinase pathways were used. There were no differences observed in NGF-sensitization when the Ras and PI3 kinase pathways were inhibited, suggesting these two pathways were not involved. However, when the Src kinase inhibitor PP2 was used, the NGF-induced increase in release was completely blocked. Furthermore, the PKC inhibitor, BIM, also inhibited the sensitization by NGF. This data indicate Src and PKC regulate of sensitivity of sensory neurons in response to brief exposure to NGF. Thus, there is differential regulation of iCGRP content and evoked release from sensory neurons in response to NGF.Item Decoy peptide targeted to Toll-IL-1R domain inhibits LPS and TLR4-active metabolite morphine-3 glucuronide sensitization of sensory neurons(Springer Nature, 2017-06-16) Allette, Yohance M.; Kim, Youngsook; Randolph, Aaron L.; Smith, Jared A.; Ripsch, Matthew S.; White, Fletcher A.; Anesthesia, School of MedicineAccumulating evidence indicates that Toll-like receptor (TLR) signaling adapter protein interactions with Toll/Interleukin-1 Receptor (TIR) domains present in sensory neurons may modulate neuropathic pain states. Following ligand interaction with TLRs, TIR serves to both initiate intracellular signaling and facilitate recruitment of signaling adapter proteins to the intracytoplasmic domain. Although TLR TIR is central to a number of TLR signaling cascades, its role in sensory neurons is poorly understood. In this study we investigated the degree to which TLR TIR decoy peptide modified to include a TAT sequence (Trans-Activator of Transcription gene in HIV; TAT-4BB) affected LPS-induced intracellular calcium flux and excitation in sensory neurons, and behavioral changes due to TLR4 active metabolite, morphine-3-glucuronide (M3G) exposure in vivo. TAT-4BB inhibited LPS-induced calcium changes in a majority of sensory neurons and decreased LPS-dependent neuronal excitability in small diameter neurons. Acute systemic administration of the TAT-4BB reversed M3G-induced tactile allodynia in a dose-dependent manner but did not affect motor activity, anxiety or responses to noxious thermal stimulus. These data suggest that targeting TLR TIR domains may provide novel pharmacological targets to reduce or reverse TLR4-dependent pain behavior in the rodent.Item Different brain responses to electro-acupuncture and moxibustion treatment in patients with Crohn's disease(Nature Publishing Group, 2016-11-18) Bao, Chunhui; Liu, Peng; Liu, Huirong; Jin, Xiaoming; Calhoun, Vince D.; Wu, Luyi; Shi, Yin; Zhang, Jianye; Zeng, Xiaoqing; Ma, Lili; Qin, Wei; Zhang, Jingzhi; Liu, Xiaoming; Tian, Jie; Wu, Huangan; Department of Anatomy and Cell Biology, School of MedicineThis study aimed to investigate changes in resting state brain activity in remissive Crohn's Disease (CD) patients after electro-acupuncture or moxibustion treatment. Fifty-two CD patients and 36 healthy subjects were enrolled, and 36 patients were equally and randomly assigned to receive either electro-acupuncture or moxibustion treatment for twelve weeks. We used resting state functional magnetic resonance imaging to assess Regional Homogeneity (ReHo) levels, and Crohn's Disease Activity Index (CDAI) and Inflammatory Bowel Disease Questionnaire (IBDQ) scores to evaluate disease severity and quality of life. The results show that (i) The ReHo levels in CD patients were significantly increased in cortical but decreased in subcortical areas, and the coupling between them was declined. (ii) Both treatments decreased CDAI, increased IBDQ scores, and normalized the ReHo values of the cortical and subcortical regions. (iii) ReHo changes in multiple cortical regions were significantly correlated with CDAI score decreases. ReHo changes in several subcortical regions in the electro-acupuncture group, and those of several cortical regions in the moxibustion group, were correlated with reduced CDAI. These findings suggest that both treatments improved cortex-subcortical coupling in remissive CD patients, but electro-acupuncture regulated homeostatic afferent processing network, while moxibustion mainly regulated the default mode network of the brain.Item Epac activation sensitizes rat sensory neurons through activation of Ras(Elsevier, 2016-01) Shariati, Behzad; Thompson, Eric L.; Nicol, Grant D.; Vasko, Michael R.; Department of Pharmacology and Toxicology, IU School of MedicineGuanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2'-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization.Item The HMGB1/RAGE axis induces bone pain associated with colonization of 4T1 mouse breast cancer in bone(Elsevier, 2021-02) Okui, Tatsuo; Hiasa, Masahiro; Ryumon, Shoji; Ono, Kisho; Kunisada, Yuki; Ibaragi, Soichiro; Sasaki, Akira; Roodman, G. David; White, Fletcher A.; Yoneda, Toshiyuki; Medicine, School of MedicineBone pain is a common complication of breast cancer (BC) bone metastasis and is a major cause of increased morbidity and mortality. Although the mechanism of BC-associated bone pain (BCABP) remains poorly understood, involvement of BC products in the pathophysiology of BCABP has been proposed. Aggressive cancers secrete damage-associated molecular patterns (DAMPs) that bind to specific DAMP receptors and modulate cancer microenvironment. A prototypic DAMP, high mobility group box 1 (HMGB1), which acts as a ligand for the receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs), is increased in its expression in BC patients with poor outcomes. Here we show that 4T1 mouse BC cells colonizing bone up-regulate the expression of molecular pain markers, phosphorylated ERK1/2 (pERK) and pCREB, in the dorsal root ganglia (DRGs) innervating bone and induced BCABP as evaluated by hind-paw mechanical hypersensitivity. Importantly, silencing HMGB1 in 4T1 BC cells by shRNA reduced pERK and pCREB and BCABP with decreased HMGB1 levels in bone. Further, administration of a neutralizing antibody to HMGB1 or an antagonist for RAGE, FPS-ZM1, ameliorated pERK, pCREB and BCABP, while a TLR4 antagonist, TAK242, showed no effects. Consistent with these in vivo results, co-cultures of F11 sensory neuron-like cells with 4T1 BC cells in microfluidic culture platforms increased neurite outgrowth of F11 cells, which was blocked by HMGB1 antibody. Our results show that HMGB1 secreted by BC cells induces BCABP via binding to RAGE of sensory neurons and suggest that the HMGB1/RAGE axis may be a potential novel therapeutic target for BCABP.Item An in vitro study of the mechanisms that underlie changes in neuronal sensitivity and neurite morphology following treatment with microtubule targeting agents(2014-11) Pittman, Sherry Kathleen; Fehrenbacher, Jill C.; Cummins, Theodore R.; Hingtgen, Cynthia M.; Hudmon, Andrew; Vasko, Michael R.Microtubule targeting agents (MTAs) are chemotherapeutics commonly used in the treatment of breast, ovarian, lung, and lymphoma cancers. There are two main classes of MTAs based upon their effects on microtubule stability. The two classes are the destabilizing agents, which include the drug vincristine, and the stabilizing agents, which include paclitaxel and epothilone B. These drugs are highly effective antineoplastics, but their use is often accompanied by several side effects, one of which is peripheral neuropathy. Peripheral neuropathy can be characterized by burning pain, tingling, loss of proprioception, or numbness in the hands and feet. In some patients, the MTA-induced peripheral neuropathy is debilitating and dose-limiting; however, there are no effective prevention strategies or treatment options for peripheral neuropathy as the mechanisms mediating this side effect are unknown. The goal of this work was to investigate MTA-induced effects on neuronal activity and morphology in order to elucidate the underlying mechanisms involved in the development of MTA-induced peripheral neuropathy. As an indicator of sensory neuronal activity, the basal and stimulated release of the putative nociceptive peptide, calcitonin gene-related peptide (CGRP), was measured from sensory neurons in culture after exposure to the MTAs paclitaxel, epothilone B, and vincristine. Neurite length and branching were also measured in sensory neuronal cultures after treatment with these MTAs. The results described in this thesis demonstrate that MTAs alter the stimulated release of CGRP from sensory neurons in differential ways depending on the MTA agent employed, the CGRP evoking-stimulus used, the concentration of the MTA agent, the duration of exposure to the MTA agent, and the presence of NGF. It was also observed that MTA agents decrease neurite length and branching, independent of the concentration of NGF in the culture media. Thus, this thesis describes MTA-induced alterations of sensory neuronal sensitivity and neurite morphology and begins to elucidate the underlying mechanisms involved in MTA-induced alterations of sensory neurons. These findings will undoubtedly be used to help elucidate the mechanisms underlying MTA-induced peripheral neuropathy.Item NEUROFIBROMIN, NERVE GROWTH FACTOR AND RAS: THEIR ROLES IN CONTROLLING THE EXCITABILITY OF MOUSE SENSORY NEURONS(2007-01-03T18:34:09Z) Wang, Yue; Nicol, Grant D.; Vasko, Michael R.; Clapp, D. Wade; Cummins, Theodore R.ABSTRACT Yue Wang Neurofibromin, nerve growth factor and Ras: their roles in controlling the excitability of mouse sensory neurons Neurofibromin, the product of the Nf1 gene, is a guanosine triphosphatase activating protein (GAP) for p21ras (Ras) that accelerates the conversion of active Ras-GTP to inactive Ras-GDP. It is likely that sensory neurons with reduced levels of neurofibromin have augmented Ras-GTP activity. In a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/-), the patch-clamp recording technique is used to investigate the role of neurofibromin in controlling the state of neuronal excitability. Sensory neurons isolated from adult Nf1+/- mice generate more APs in response to a ramp of depolarizing current compared to Nf1+/+ mice. In order to elucidate whether the activation of Ras underlies this augmented excitability, sensory neurons are exposed to nerve growth factor (NGF) that activates Ras. In Nf1+/+ neurons, exposure to NGF increases the production of APs. To examine whether activation of Ras contributes to the NGF-induced sensitization in Nf1+/+ neurons, an antibody that neutralizes Ras activity is internally perfused into neurons. The NGF-mediated augmentation of excitability is suppressed by the Ras-blocking antibody in Nf1+/+ neurons, suggesting the NGF-induced sensitization in Nf1+/+ neurons depends on the activation of Ras. Surprisingly, the excitability of Nf1+/- neurons is not altered by the blocking antibody, suggesting that this enhanced excitability may depend on previous activation of downstream effectors of Ras. To determine the mechanism giving rise to augmented excitability of Nf1+/- neurons, isolated membrane currents are examined. Consistent with the enhanced excitability of Nf1+/- neurons, the peak current density of tetrodotoxin-resistant (TTX-R) and TTX-sensitive (TTX-S) sodium currents (INa) are significantly larger than in Nf1+/+ neurons. Although the voltage for half-maximal activation (V0.5) is not different, there is a significant depolarizing shift in the V0.5 for steady-state inactivation of INa in Nf1+/- neurons. In summary, these results demonstrate that the enhanced production of APs in Nf1+/- neurons results from a larger current amplitude and a depolarized voltage dependence of steady-state inactivation of INa that leads to more sodium channels being available for the subsequent firing of APs. My investigation supports the idea that regulation of channels by the Ras cascade is an important determinant of neuronal excitability. Grant D. Nicol, Ph.D, ChairItem Paclitaxel alters the function of the small diameter sensory neurons(2011-07-08) Gracias, Neilia; Vasko, Michael R.; Brustovetsky, Nickolay; Hingtgen, Cynthia M., 1966-; Hudmon, Andrew; Kelley, Mark Richard, 1957-Although paclitaxel is a commonly used anti-neoplastic agent for the treatment of solid tumors, therapy often results in a number of side effects, the most debilitating of which is peripheral neuropathy. Peripheral neuropathy is defined as a pathology of peripheral nerves, and, depending on the type of nerves damaged, the neuropathy can be classified as sensory, motor, or autonomic neuropathy. In the case of peripheral neuropathy induced by paclitaxel, the symptoms are experienced in the extremities and are sensory in nature. Patients undergoing chemotherapy with paclitaxel often report sensory disturbances such as burning, tingling, numbness, a diminished sensation to pain and temperature, loss of vibration sense, loss of proprioception, and loss of deep tendon reflexes. Electrophysiological abnormalities including decreased sensory nerve action potential amplitude and conduction confirm damage to large myelinated fibers. However, the involvement of damage to small diameter sensory neurons in the etiology of paclitaxel – induced peripheral neuropathy is still controversial. Therefore, experiments were performed to determine if paclitaxel alters the function of small diameter sensory neurons and to examine the mechanisms responsible for the change in function. vi Sensory neuron mediated vasodilatation in paclitaxel – injected animals was examined as an indirect measure of calcitonin gene related peptide (CGRP) release and therefore of sensory neuron function. CGRP release was also directly measured from central terminals in the spinal cord. To examine mechanisms of paclitaxel – induced sensory neuron damage, CGRP release and neurite length was examined in paclitaxel – treated sensory neurons in culture. The results demonstrate that (1) paclitaxel decreases the ability of small diameter sensory neurons to produce an increase in blood flow in the skin; (2) paclitaxel alters the release of CGRP from the small diameter sensory neurons; (3) paclitaxel causes the neuronal processes of isolated sensory neurons to degenerate. This dissertation provides novel information showing that paclitaxel alters the function of small diameter sensory neurons and thus provides a better understanding of the mechanisms mediating the sensory disturbances characteristic of peripheral neuropathy resulting from chemotherapy with paclitaxel.Item Resurgent sodicum current modulation by auxiliary subunits in dorsal root ganglia neurons and potential implications in pain pathologies(2016-04-11) Barbosa Nuñez, Cindy Marie; Cummins, Theodore R.; Fehrenbacher, Jill C.; Hudmon, Andy; Nicol, Grant D.; Day, RichardIncreased electrical activity in peripheral sensory neurons contributes to pain. A unique type of sodium current, fast resurgent current, is proposed to increase nerve activity and has been associated with pain pathologies. While sodium channel isoform Nav1.6 has been identified as the main carrier of fast resurgent currents, our understanding of how resurgent currents are modulated in sensory neurons is fairly limited. Thus the goal of this dissertation was to identify resurgent current modulators. In particular, we focused on sodium channel beta subunits (Navβs) and fibroblast growth factor homologous factors (FHFs) in dorsal root ganglion (DRG) neurons. We hypothesized that Navβ4 and FHF2B act as positive regulators by mediating resurgent currents and modulating Nav1.6 inactivation, respectively. In contrast, we hypothesized FHF2A negatively regulates resurgent current by increasing the probability of channels in inactivated states. Thus, the aims of this dissertation were to 1) determine if Navβ4 regulates fast resurgent currents in DRG neurons, 2) examine the effects of Navβ4 knockdown on resurgent currents, firing frequency and pain associated behavior in an inflammatory pain model and 3) determine if FHF2A and FHF2B functionally regulate Nav1.6 currents, including resurgent currents in DRG neurons. To examine the aims, we used biochemical, electrophysiological and behavioral assays. Our results suggest that Navβ4 is a positive regulator of resurgent currents: in particular, the C-terminus likely mediates these currents. Localized knockdown of Navβ4 decreased inflammation-induced enhancement of resurgent currents and neuronal excitability, and prevented the development of persistent pain associated behavior in an inflammatory pain model. FHF2B increased resurgent currents and delayed inactivation. In contrast, FHF2A limited resurgent currents; an effect that is mainly contributed by FHF2A's N-terminus activity that increased accumulation of channels in inactivated states. Interestingly, in an inflammatory pain model FHF2B was upregulated and FHFA isoforms were downregulated. Together these results suggest that FHF2A/B modulation might contribute to enhanced resurgent currents and increased neuronal excitability observed in the inflammatory pain model. Overall, our work has identified three resurgent current modulators FHF2A, FHF2B and Navβ4. Manipulation of these proteins or their activity might result in novel strategies for the study and treatment of pain.Item RET-DEPENDENT AND RET-INDEPENDENT MECHANISMS OF GFL-INDUCED ENHANCEMENT IN THE CAPSAICIN STIMULATED-RELEASE OF iCGRP FROM SENSORY NEURONS(2010-02-02T22:18:31Z) Schmutzler, Brian S.; Hingtgen, Cynthia M., 1966-; Cummins, Theodore R.; Vasko, Michael R.; Broustovetski, Nikolai; Hudmon, AndyThe glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are peptides implicated in the inflammatory response. They are released in increased amounts during inflammation and induce thermal hyperalgesia. Whether these molecules directly affect the sensitivity of primary nociceptive sensory neurons is unknown. This information could provide a link between increased inflammation-induced release of GFLs and their ability to promote inflammatory hyperalgesia. These molecules bind to one of four GFRα receptor subtypes, and this GFL-GFRα complex often translocates to the receptor tyrosine kinase, Ret. The focus of this dissertation was to determine whether GFLs modulate the stimulated-release of calcitonin gene-related peptide (CGRP). Isolated sensory neurons and freshly dissociated spinal cord tissue were used to examine the enhancement in stimulated-release of CGRP, a measure of sensitization. Exposure of isolated sensory neurons to GDNF, neurturin, and artemin, enhanced the capsaicin stimulated-release of immunoreactive CGRP (iCGRP). Sensitization by GFLs occurred in freshly dissociated spinal cord tissue. Persephin, another member of the GFL family, did not enhance stimulated-release of iCGRP. These results demonstrate that specific GFLs are mediators of neuronal sensitivity. The intracellular signaling pathways responsible for this sensitization were also evaluated. Inhibition of the mitogen activated protein kinase (MAPK)/extracellular signal-related kinase 1/2 (Erk 1/2) pathway selectively abolished the enhancement of CGRP release by GDNF. NTN-induced sensitization was abolished by inhibition of the phosphatidylinositol-3-kinase (PI-3K) pathway. Reduction in Ret abolished the GDNF-induced sensitization, but did not fully inhibit NTN or ART-induced sensitization. Inhibition of other cell surface receptors (neural cell adhesion molecule (NCAM), and Integrin β-1) had distinct effects on the sensitization capability of each of the GFLs. Ret and NCAM inhibition in combination abolished ART-induced sensitization. It was necessary to inhibit Ret, NCAM, and Integrin β-1 to prevent the NTN-induced sensitization. These data demonstrate that the GFLs use distinct signaling mechanisms to induce the sensitization of nociceptive sensory neurons. The work presented in this thesis provides the first evidence for these novel and distinct Ret-independent pathways for GFL-induced actions and provides insight into the mechanism of sensory neuronal sensitization in general.