- Browse by Subject
Browsing by Subject "Self-renewal"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Bmi1 Regulates Wnt Signaling in Hematopoietic Stem and Progenitor Cells(Springer, 2021) Yu, Hao; Gao, Rui; Chen, Sisi; Liu, Xicheng; Wang, Qiang; Cai, Wenjie; Vemula, Sasidhar; Fahey, Aidan C.; Henley, Danielle; Kobayashi, Michihiro; Liu, Stephen Z.; Qian, Zhijian; Kapur, Reuben; Broxmeyer, Hal E.; Gao, Zhonghua; Xi, Rongwen; Liu, Yan; Pediatrics, School of MedicinePolycomb group protein Bmi1 is essential for hematopoietic stem cell (HSC) self-renewal and terminal differentiation. However, its target genes in hematopoietic stem and progenitor cells are largely unknown. We performed gene expression profiling assays and found that genes of the Wnt signaling pathway are significantly elevated in Bmi1 null hematopoietic stem and progenitor cells (HSPCs). Bmi1 is associated with several genes of the Wnt signaling pathway in hematopoietic cells. Further, we found that Bmi1 represses Wnt gene expression in HSPCs. Importantly, loss of β-catenin, which reduces Wnt activation, partially rescues the HSC self-renewal and differentiation defects seen in the Bmi1 null mice. Thus, we have identified Bmi1 as a novel regulator of Wnt signaling pathway in HSPCs. Given that Wnt signaling pathway plays an important role in hematopoiesis, our studies suggest that modulating Wnt signaling may hold potential for enhancing HSC self-renewal, thereby improving the outcomes of HSC transplantation.Item Nanog-dependent function of Tet1 and Tet2 in establishment of pluripotency(Springer Nature, 2013) Costa, Yael; Ding, Junjun; Theunissen, Thorold W.; Faiola, Francesco; Hore, Timothy A.; Shliaha, Pavel V.; Fidalgo, Miguel; Saunders, Arven; Lawrence, Moyra; Dietmann, Sabine; Das, Satyabrata; Levasseur, Dana N.; Li, Zhe; Xu, Mingjiang; Reik, Wolf; Silva, José C. R.; Wang, Jianlong; Pediatrics, School of MedicineMolecular control of the pluripotent state is thought to reside in a core circuitry of master transcription factors including the homeodomain-containing protein NANOG, which has an essential role in establishing ground state pluripotency during somatic cell reprogramming. Whereas the genomic occupancy of NANOG has been extensively investigated, comparatively little is known about NANOG-associated proteins and their contribution to the NANOG-mediated reprogramming process. Using enhanced purification techniques and a stringent computational algorithm, we identify 27 high-confidence protein interaction partners of NANOG in mouse embryonic stem cells. These consist of 19 previously unknown partners of NANOG that have not been reported before, including the ten-eleven translocation (TET) family methylcytosine hydroxylase TET1. We confirm physical association of NANOG with TET1, and demonstrate that TET1, in synergy with NANOG, enhances the efficiency of reprogramming. We also find physical association and reprogramming synergy of TET2 with NANOG, and demonstrate that knockdown of TET2 abolishes the reprogramming synergy of NANOG with a catalytically deficient mutant of TET1. These results indicate that the physical interaction between NANOG and TET1/TET2 proteins facilitates reprogramming in a manner that is dependent on the catalytic activity of TET1/TET2. TET1 and NANOG co-occupy genomic loci of genes associated with both maintenance of pluripotency and lineage commitment in embryonic stem cells, and TET1 binding is reduced upon NANOG depletion. Co-expression of NANOG and TET1 increases 5-hydroxymethylcytosine levels at the top-ranked common target loci Esrrb and Oct4 (also called Pou5f1), resulting in priming of their expression before reprogramming to naive pluripotency. We propose that TET1 is recruited by NANOG to enhance the expression of a subset of key reprogramming target genes. These results provide an insight into the reprogramming mechanism of NANOG and uncover a new role for 5-methylcytosine hydroxylases in the establishment of naive pluripotency.Item PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal(Wiley, 2014-07) Kobayashi, Michihiro; Bai, Yunpeng; Dong, Yuanshu; Yu, Hao; Chen, Sisi; Gao, Rui; Zhang, Lujuan; Yoder, Mervin C.; Kapur, Reuben; Zhang, Zhong-Yin; Liu, Yan; Department of Pediatrics, Indiana University School of MedicineHematopoietic stem cell (HSC) self-renewal is tightly controlled by cytokines and other signals in the microenvironment. While stem cell factor (SCF) is an early acting cytokine that activates the receptor tyrosine kinase KIT and promotes HSC maintenance, how SCF/KIT signaling is regulated in HSCs is poorly understood. The protein tyrosine phosphatase 4A (PTP4A) family (aka PRL [phosphatase of regenerating liver] phosphatases), consisting of PTP4A1/PRL1, PTP4A2/PRL2, and PTP4A3/PRL3, represents an intriguing group of phosphatases implicated in cell proliferation and tumorigenesis. However, the role of PTP4A in hematopoiesis remains elusive. To define the role of PTP4A in hematopoiesis, we analyzed HSC behavior in Ptp4a2 (Prl2) deficient mice. We found that Ptp4a2 deficiency impairs HSC self-renewal as revealed by serial bone marrow transplantation assays. Moreover, we observed that Ptp4a2 null hematopoietic stem and progenitor cells (HSPCs) are more quiescent and show reduced activation of the AKT and ERK signaling. Importantly, we discovered that the ability of PTP4A2 to enhance HSPC proliferation and activation of AKT and ERK signaling depends on its phosphatase activity. Furthermore, we found that PTP4A2 is important for SCF-mediated HSPC proliferation and loss of Ptp4a2 decreased the ability of oncogenic KIT/D814V mutant in promoting hematopoietic progenitor cell proliferation. Thus, PTP4A2 plays critical roles in regulating HSC self-renewal and mediating SCF/KIT signaling.Item Role of S6K1 in regulating self-renewal of hematopoietic stem cells and propagatoin of leukemia(2015-12-15) Ghosh, Joydeep; Kapur, Reuben; Carlesso, Nadia; Pelus, Louis M.; Srour, Edward F.The development and function of hematopoietic stem cells (HSCs) is regulated by numerous signaling pathways including Akt-mechanistic target of rapamycin complex1 (mTORC1) pathway. Dysregulation of this pathway results in impaired HSC function and contributes to the development of hematologic malignancies. Activated mTORC1 phosphorylates and subsequently activates ribosomal protein S6 kinase 1 (S6K1). To study the role of S6K1 in hematopoiesis as well as leukemogenesis, we used a genetic model of S6K1 deficient mice (S6K1-/-). We found that loss of S6K1 expression in HSCs results in reduction of absolute HSC number in bone marrow (BM). Following chemotherapy, cycling HSCs undergo apoptosis and quiescent HSCs are required to cycle to regenerate the hematopoietic system. S6K1 regulates the quiescence of HSCs and in the absence of S6K1, mice are more susceptible to repeated myeloablative stress. We also observed that loss of expression as well as gain of expression of S6K1 affects the self-renewal ability of HSCs. Interestingly, when we overexpressed S6K1, it also resulted in reduced self-renewal of HSCs. Next, we assessed the role of S6K1 in the propagation of acute myeloid leukemia (AML). The mixed-lineage leukemia (MLL) gene is required for the maintenance of adult HSCs. Translocations in MLL are detected in approximately 5-10% of adult acute leukemia patients and in approximately 70% of acute leukemias in infants. We expressed MLL-AF9 fusion oncoprotein in WT and S6K1-/- hematopoietic stem and progenitor cells (HSC/Ps) and performed serial transplantation. Upon secondary transplantation, recipients of S6K1 deficient AML cells survived significantly longer compared to controls. In vitro, pharmacological inhibition of S6K1 activity resulted in reduced growth of primary human cells expressing MLL-AF9. Both human and murine HSC/Ps expressing MLL-AF9 showed reduced mTORC1 activity upon inhibition of S6K1 suggesting that loss of S6K1 activity results in reduced Akt-mTORC1 activation both upstream and downstream of mTORC1. Overall, our studies establish a critical role of S6K1 activity in the maintenance of HSC function and in the propagation of leukemia.Item Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection(Cell Press, 2021) Zhu, Bibo; Wu, Yue; Huang, Su; Zhang, Ruixuan; Son, Young Min; Li, Chaofan; Cheon, In Su; Gao, Xiaochen; Wang, Min; Chen, Yao; Zhou, Xian; Nguyen, Quynh; Phan, Anthony T.; Behl, Supriya; Taketo, M. Mark; Mack, Matthias; Shapiro, Virginia S.; Zeng, Hu; Ebihara, Hideki; Mullon, John J.; Edell, Eric S.; Reisenauer, Janani S.; Demirel, Nadir; Kern, Ryan M.; Chakraborty, Rana; Cui, Weiguo; Kaplan, Mark H.; Zhou, Xiaobo; Goldrath, Ananda W.; Sun, Jie; Microbiology and Immunology, School of MedicineTissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/β-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of β-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, β-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted β-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This β-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by β-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.