- Browse by Subject
Browsing by Subject "Selenium"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Distribution of Pb and Se in mouse brain following subchronic Pb exposure by using synchrotron X-ray fluorescence(Elsevier, 2022) Webb, Alexis N.; Spiers, Kathryn M.; Falkenberg, Gerald; Gu, Huiying; Dwibhashyam, Sai S.; Du, Yansheng; Zheng, Wei; Nie, Linda H.; Neurology, School of MedicineLead (Pb) is a well-known neurotoxicant and environmental hazard. Recent experimental evidence has linked Pb exposure with neurological deterioration leading to neurodegenerative diseases, such as Alzheimer’s disease. To understand brain regional distribution of Pb and its interaction with other metal ions, we used synchrotron micro-x-ray fluorescence technique (μ-XRF) to map the metal distribution pattern and to quantify metal concentrations in mouse brains. Lead-exposed mice received oral gavage of Pb acetate once daily for 4 weeks; the control mice received sodium acetate. Brain tissues were cut into slices and subjected for analysis. Synchrotron μ-XRF scans were run on the PETRA III P06 beamline (DESY). Coarse scans of the entire brain were performed to locate the cortex and hippocampus, after which scans with higher resolution were run in these areas. The results showed that: a) the total Pb intensity in Pb-exposed brain slices was significantly higher than in control brain; b) Pb typically deposited in localized particles of <10 um2 in both the Pb-exposed and control brain slices, with more of these particles in Pb-exposed samples; c) selenium(Se) was significantly correlated with Pb in these particles in the cortex and hippocampus/corpus callosum regions in the Pb-exposed samples, and the molar ratio of the Se and Pb in these particles is close to 1:1. These results indicated that Se may play a crucial role in Pb-induced neurotoxicity. Our findings call for further studies to investigate the relationship between Pb exposure and possible Se detoxification responses, and the implication in the etiology of Alzheimer’s disease.Item Selenium Level and Dyslipidemia in Rural Elderly Chinese(Public Library of Science, 2015) Su, Liqin; Gao, Sujuan; Unverzagt, Frederick W.; Cheng, Yibin; Hake, Ann M.; Xin, Pengju; Chen, Chen; Liu, Jingyi; Ma, Feng; Bian, Jianchao; Li, Ping; Jin, Yinlong; Department of Biostatistics, School of Public HealthOBJECTIVE: Higher selenium level has been hypothesized to have the potential to reduce the risk of cardiovascular diseases including dyslipidemia. However, results from previous studies are inconsistent. This study aims to determine the association between selenium level and dyslipidemia in elderly Chinese with relatively low selenium status. METHODS: A cross-sectional study of 1859 participants aged 65 or older from four rural counties in China was conducted. Serum total cholesterol (TC), triglycerides (TG), high density lipoprotein-cholesterol (HDLC) and low-density lipoprotein-cholesterol (LDLC), nail selenium concentration and APOE genotype were measured in all subjects. The four types of dyslipidemia were defined as >5.17 mmol/L for High-TC, >1.69 mmol/L for High-TG, >3.36 mmol/L for High-LDLC, and <1.04 mmol/L for Low-HDLC according to Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults. Logistic models adjusting for age, gender, APOE genotype, body mass index, alcohol consumption, smoking, physical activity, medication use for cardiovascular diseases were used to examine the relationship between selenium levels and the risk of dyslipidemia. RESULTS: Mean nail selenium concentration was 0.465 μg/gin this sample. Rates for High-TC, High-LDLC, High-TG, Low-HDLC were 18.13%, 13.23%, 12.21% and 32.76% respectively. Results from logistic models indicated that higher selenium levels were significantly associated with higher risk of High-TC, High-LDLC and lower risk of Low-HDLC adjusting for covariates (p < 0.0001). Compared with the lowest selenium quartile group, participants in selenium quartile groups 2, 3 and 4 had significantly higher rates of High-TC, High-LDLC, High-TG, and lower rate of Low-HDLC adjusting for covariates. No significant association was observed between selenium level and the risk of High-TG. APOEε4 carriers had higher rates of High-TC and High-LDLC. There was no interaction between selenium level and APOE with the rates of dyslipidemia. CONCLUSIONS: Our results suggest long-term selenium exposure level may be associated with the risk of dyslipidemia in elderly population. Future studies are needed to examine the underlying mechanism of the association.Item Selenomethionine and methyl selenocysteine: multiple-dose pharmacokinetics in selenium-replete men(Impact Journals, 2017-04-18) Marshall, James R.; Burk, Raymond F.; Ondracek, Rochelle Payne; Hill, Kristina E.; Perloff, Marjorie; Davis, Warren; Pili, Roberto; George, Saby; Bergan, Raymond; Medicine, School of MedicineAccording to the Nutritional Prevention of Cancer (NPC) trial, a selenized yeast supplement containing selenium, 200 mcg/day, decreased the incidence of total cancer, cancers of the prostate, colon and lung, and cancer mortality. The active agent in the selenized yeast supplement was assumed to be selenomethionine (SEMET), although the supplement had not been well speciated. The SELECT study, largely motivated by the NPC trial, enrolling nearly 40 times as many subjects, showed unequivocally that selenium 200 mcg/day, with selenium in the form of SEMET, does not protect selenium-replete men against prostate or other major cancer. The agent tested by SELECT, pure SEMET, could have been different from the selenized yeast tested in NPC. One of the selenium forms suspected of having chemopreventive effects, and which may have been present in the NPC agent, is methyl selenocysteine (MSC). This study, with 29 selenium-replete patients enrolled in a randomized, double-blind trial, compared the multiple-dose toxicity, pharmacokinetics and pharmacodynamics of MSC and SEMET. Patients were on trial for 84 days. No toxicity was observed. Although SEMET supplementation increased blood selenium concentration more than MSC did, neither form had a more than minimal impact on the two major selenoproteins: selenoprotein P(SEPP1) and glutathione peroxidase(GPX).Item Serum mercury concentration and the risk of ischemic stroke: The REasons for Geographic and Racial Differences in Stroke Trace Element Study(Elsevier, 2018-08) Chen, Cheng; Xun, Pengcheng; McClure, Leslie A.; Brockman, John; MacDonald, Leslie; Cushman, Mary; Cai, Jianwen; Kamendulis, Lisa; Mackey, Jason; He, Ka; Neurology, School of MedicineBACKGROUND: Although biologically plausible, epidemiological evidence linking exposure to methylmercury with increased risk of ischemic stroke is limited. The effects of methylmercury may be modified by selenium, which is an anti-oxidant that often co-exists with mercury in fish. OBJECTIVES: To examine the association between serum mercury levels with the incidence of ischemic stroke and to explore the possible effect modifications by serum selenium levels and demographic and geographic factors. METHODS: A case-cohort study was designed nested in the REasons for Geographic and Racial Differences in Stroke cohort, including 662 adjudicated incident cases of ischemic stroke and 2494 participants in a randomly selected sub-cohort. Serum mercury was measured using samples collected at recruitment. Multivariable-adjusted hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs) were estimated using the Barlow-weighting method for the Cox proportional hazards regression model. RESULTS: No statistically significant association was observed between serum mercury concentration and the incidence of ischemic stroke (the highest vs. lowest quintile of mercury levels: HR = 0.82; 95% CI = 0.55-1.22; P for linear trend = 0.42). Sex (P for interaction = 0.06), but not serum selenium levels, modified the association; a more evident trend toward lower incidence of ischemic stroke with higher mercury levels was observed among women. CONCLUSION: This study does not support an association between mercury and the incidence of ischemic stroke within a population with low-to-moderate level of exposure. Further studies are needed to explore the possibility of mercury-induced ischemic stroke toxicity in other populations at higher exposure levels.