- Browse by Subject
Browsing by Subject "Sedimentology"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Reconstructing Holocene Indian Summer Monsoon Variability Using High Resolution Sediments from the Southeastern Tibet(2020-12) Perello, Melanie Marie; Bird, Broxton; Gilhooly, William; Filippelli, Gabriel; Wang, Lixin; Wilson, JeffreyThe Indian summer monsoon (ISM) is the dominant hydrometeorological phenomenon that provides the majority of precipitation to southern Asia and southeastern Tibet specifically. Reliable projections of ISM rainfall are critical for water management and hinge on our understanding of the drivers of the monsoon system and how these drivers will be impacted by climate change. Because instrumental climate records are limited in space and time, natural climate archives are required to understand how the ISM varied in the past in response to changes in climatic boundary climate conditions. Lake sediments are high-resolution natural paleoclimate archive that are widely distributed across the Tibetan Plateau, making them useful for investigating long-term precipitation trends and their response to climatic boundary conditions. To investigate changes in monsoon intensity during the Holocene, three lakes were sampled along an east-west transect in southeastern Tibet: Galang Co, Nir’Pa Co, and Cuobu. Paleoclimate records from each lake were developed using isotopic (leaf wax hydrogen isotopes; δ2H), sedimentological, and geochemical proxies of precipitation and lake levels. Sediments were sampled at high temporal frequencies, with most proxies resolved at decadal scales, to capture multi-decadal to millennial-scale variability in monsoon intensity and local hydroclimate conditions. The ISM was strongest in the early Holocene as evidenced by leaf-wax n-alkane δ2H at both Cuobu and Galang Co corresponding with Cuobu’s higher lake levels and effective moisture. Monsoon intensity declined at Cuobu and Galang Co around 6 ka which corresponds to reduced riverine sediment influxes at Cuobu and deeper lake levels at Galang Co. The antiphase relationship between lake levels and monsoon intensity at Galang Co is attributed to air temperatures and effective moisture, with a warmer and drier local hydroclimate driving early Holocene low lake levels. The late Holocene ISM was more variable with wet and dry periods, as seen in the Nir’Pa Co lake level and leaf wax n-alkane δ2H record. These records demonstrate coherent drivers of synoptic and local hydroclimate that account for Holocene ISM expression across the southeastern Tibetan Plateau, indicating possible drivers of future monsoon expression under climate change.Item Using sediment accumulation rates in floodplain paleochannel lakes to reconstruct climate-flood relationships on the lower Ohio River(Elsevier, 2022-12-15) Gibson , Derek K.; Bird, Broxton W.; Pollard, Harvie J.; Nealy, Cameron A.; Barr, Robert C.; Escobar, Jaime; Earth and Environmental Sciences, School of ScienceLate Holocene flood frequencies on the lower Ohio River were investigated using 14C-based sedimentation rates from three floodplain lakes located in Illinois (Avery Lake), Kentucky (Grassy Pond), and Indiana (Goose Pond). Changes in sediment accumulation rates were attributed to variability in the delivery of overbank sediment to each site as controlled by the frequency of Ohio River flooding. Sedimentation rates reached their lowest values in all three lakes between 400 and 1230 CE, indicating a regional reduction in flood frequencies on the lower Ohio River during a period that included the Medieval Climate Anomaly (MCA; ca. 950–1250 CE). Sedimentation rates increased after ca. 1230 CE and remained moderately high through the Little Ice Age (LIA; 1350–1820 CE) until the onset of extensive land clearance during the early 1800s CE. After 1820 CE, sedimentation rates increased further and were higher than any other time during the late Holocene. A comparison of regional paleoclimatic proxies with the above floodplain sedimentation records shows that Ohio River flooding during the late Holocene was responsive to mean-state changes in atmospheric circulation. During the MCA, when clockwise mean-state atmospheric circulation advected southerly moisture from the Gulf of Mexico into the Ohio River Valley primarily in the form of convective rainstorms, flooding on the Ohio River was least frequent. During the LIA, meridional mean-state atmospheric circulation increased the proportion of midcontinental moisture that was sourced from the northern Pacific and Arctic and delivered as snowfall, hence increasing flooding on the Ohio River. We attribute the increase in Ohio River flooding during the LIA to an increase in snowpack volume across the Ohio River Valley and the watershed-scale integration of runoff during spring snowmelt. Following Euro-American land clearance in the early 1800s, flood frequencies decoupled from this relationship and the lower Ohio River became susceptible to frequent flooding, despite a return to southerly and clockwise synoptic atmospheric conditions. These modern climate-flood dynamics are fundamentally different than those of the paleo-record and suggest that land-use changes – such as deforestation, tile draining, and landscape conversion to intensive row crop agriculture – have fundamentally altered the modern Midwestern hydrologic cycle.