- Browse by Subject
Browsing by Subject "Secretome"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Circulating cell-free messenger RNA secretome characterization of primary sclerosing cholangitis(Wolters Kluwer, 2023-05-23) Chalasan, Naga; Vuppalanchi, Raj; Lammert, Craig; Gawrieh, Samer; Braun, Jerome V.; Zhuang, Jiali; Ibarra, Arkaitz; Ross, David A.; Nerenberg, Michael; Quake, Stephen R.; Sninsky, John J.; Toden, Shusuke; Medicine, School of MedicineBackground: Primary sclerosing cholangitis (PSC) is a rare chronic cholestatic liver disease characterized by multifocal bile duct strictures. To date, underlying molecular mechanisms of PSC remain unclear, and therapeutic options are limited. Methods: We performed cell-free messenger RNA (cf-mRNA) sequencing to characterize the circulating transcriptome of PSC and noninvasively investigate potentially bioactive signals that are associated with PSC. Serum cf-mRNA profiles were compared among 50 individuals with PSC, 20 healthy controls, and 235 individuals with NAFLD. Tissue and cell type-of-origin genes that are dysregulated in subjects with PSC were evaluated. Subsequently, diagnostic classifiers were developed using PSC dysregulated cf-mRNA genes. Results: Differential expression analysis of the cf-mRNA transcriptomes of PSC and healthy controls resulted in identification of 1407 dysregulated genes. Furthermore, differentially expressed genes between PSC and healthy controls or NAFLD shared common genes known to be involved in liver pathophysiology. In particular, genes from liver- and specific cell type-origin, including hepatocyte, HSCs, and KCs, were highly abundant in cf-mRNA of subjects with PSC. Gene cluster analysis revealed that liver-specific genes dysregulated in PSC form a distinct cluster, which corresponded to a subset of the PSC subject population. Finally, we developed a cf-mRNA diagnostic classifier using liver-specific genes that discriminated PSC from healthy control subjects using gene transcripts of liver origin. Conclusions: Blood-based whole-transcriptome cf-mRNA profiling revealed high abundance of liver-specific genes in sera of subjects with PSC, which may be used to diagnose patients with PSC. We identified several unique cf-mRNA profiles of subjects with PSC. These findings may also have utility for noninvasive molecular stratification of subjects with PSC for pharmacotherapy safety and response studies.Item Evaluating Thera-101 as a Low-Volume Resuscitation Fluid in a Model of Polytrauma(MDPI, 2022-10-21) Shah, Jessica Stukel; Macaitis, Joseph; Lundquist, Bridney; Johnstone, Brian; Coleman, Michael; Jefferson, Michelle A.; Glaser, Jacob; Rodriguez, Annette R.; Cardin, Sylvain; Wang, Heuy-Ching; Burdette, Alexander; Emergency Medicine, School of MedicineTraumatic brain injury (TBI) and hemorrhage remain challenging to treat in austere conditions. Developing a therapeutic to mitigate the associated pathophysiology is critical to meet this treatment gap, especially as these injuries and associated high mortality are possibly preventable. Here, Thera-101 (T-101) was evaluated as low-volume resuscitative fluid in a rat model of TBI and hemorrhage. The therapeutic, T-101, is uniquely situated as a TBI and hemorrhage intervention. It contains a cocktail of proteins and microvesicles from the secretome of adipose-derived mesenchymal stromal cells that can act on repair and regenerative mechanisms associated with poly-trauma. T-101 efficacy was determined at 4, 24, 48, and 72 h post-injury by evaluating blood chemistry, inflammatory chemo/cytokines, histology, and diffusion tensor imaging. Blood chemistry indicated that T-101 reduced the markers of liver damage to Sham levels while the levels remained elevated with the control (saline) resuscitative fluid. Histology supports the potential protective effects of T-101 on the kidneys. Diffusion tensor imaging showed that the injury caused the most damage to the corpus callosum and the fimbria. Immunohistochemistry suggests that T-101 may mitigate astrocyte activation at 72 h. Together, these data suggest that T-101 may serve as a potential field deployable low-volume resuscitation therapeutic.Item Proteins Found in the Triple-Negative Breast Cancer Secretome and Their Therapeutic Potential(MDPI, 2023-01-20) McHenry, Peter R.; Prosperi, Jenifer R.; Biochemistry and Molecular Biology, School of MedicineThe cancer secretome comprises factors secreted by tumors, including cytokines, growth factors, proteins from the extracellular matrix (ECM), proteases and protease inhibitors, membrane and extracellular vesicle proteins, peptide hormones, and metabolic proteins. Secreted proteins provide an avenue for communication with other tumor cells and stromal cells, and these in turn promote tumor growth and progression. Breast cancer is the most commonly diagnosed cancer in women in the US and worldwide. Triple-negative breast cancer (TNBC) is characterized by its aggressiveness and its lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and HER2, making it unable to be treated with therapies targeting these protein markers, and leaving patients to rely on standard chemotherapy. In order to develop more effective therapies against TNBC, researchers are searching for targetable molecules specific to TNBC. Proteins in the TNBC secretome are involved in wide-ranging cancer-promoting processes, including tumor growth, angiogenesis, inflammation, the EMT, drug resistance, invasion, and development of the premetastatic niche. In this review, we catalog the currently known proteins in the secretome of TNBC tumors and correlate these secreted molecules with potential therapeutic opportunities to facilitate translational research.Item Systemic Dental Pulp Stem Cell Secretome Therapy in a Mouse Model of Amyotrophic Lateral Sclerosis(MDPI, 2019-07-14) Wang, Junmei; Zuzzio, Kirstin; Walker, Chandler L.; Biomedical Sciences and Comprehensive Care, School of DentistryAmyotrophic lateral sclerosis (ALS) is a devastating motor neuron (MN) disease with no cure. Accumulating evidence indicates ALS involves a complex interaction between central glia and the peripheral immune response and neuromuscular interface. Stem cell secretomes contain various beneficial trophic factors and cytokines, and we recently demonstrated that administration of the secretome of adipose-derived stem cells (ASCs) during early neuromuscular junction (NMJ) denervation in the mutant superoxide dismutase (mSOD1G93A) ALS mouse ameliorated NMJ disruption. In the present study, we hypothesized that administration of dental pulp stem cell secretome in the form of conditioned medium (DPSC-CM) at different stages of disease would promote NMJ innervation, prevent MN loss and extend lifespan. Our findings show that DPSC-CM significantly improved NMJ innervation at postnatal day (PD) 47 compared to vehicle treated mSOD1G93A mice (p < 0.05). During late pre-symptomatic stages (PD70-P91), DPSC-CM significantly increased MN survival (p < 0.01) and NMJ preservation (p < 0.05), while reactive gliosis in the ventral horn remained unaffected. For DPSC-CM treated mSOD1G93A mice beginning at symptom onset, post-onset days of survival as well as overall lifespan was significantly increased compared to vehicle treated mice (p < 0.05). This is the first study to show therapeutic benefits of systemic DPSC secretome in experimental ALS, and establishes a foundation for future research into the treatment effects and mechanistic analyses of DPSC and other stem cell secretome therapies in ALS.Item The inhibition of pancreatic cancer progression by K-Ras-overexpressing mesenchymal stem cell-derived secretomes(Springer Nature, 2023-09-12) Huo, Qingji; Li, Kexin; Sun, Xun; Zhuang, Adam; Minami, Kazumasa; Tamari, Keisuke; Ogawa, Kazuhiko; Fishel, Melissa L.; Li, Bai‑Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyPancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival. To explore an uncharted function of K-Ras proto-oncogene, K-Ras was activated in mesenchymal stem cells (MSCs) and the effects of MSC conditioned medium (CM) on PDAC were examined. Overexpression of K-Ras elevated PI3K signaling in MSCs, and K-Ras/PI3K-activated MSC-derived CM reduced the proliferation and migration of tumor cells, as well as the growth of ex vivo freshly isolated human PDAC cultures. CM's anti-tumor capability was additive with Gemcitabine, a commonly used chemotherapeutic drug in the treatment of PDAC. The systemic administration of CM in a mouse model suppressed the colonization of PDAC in the lung. MSC CM was enriched with Moesin (MSN), which acted as an extracellular tumor-suppressing protein by interacting with CD44. Tumor-suppressive CM was also generated by PKA-activated peripheral blood mononuclear cells. Collectively, this study demonstrated that MSC CM can be engineered to act as a tumor-suppressive agent by activating K-Ras and PI3K, and the MSN-CD44 regulatory axis is in part responsible for this potential unconventional option in the treatment of PDAC.