ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Sclera Recognition"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A NEW APPROACH FOR HUMAN IDENTIFICATION USING THE EYE
    (2010) Thomas, N. Luke; Du, Yingzi; Rizkalla, Maher; King, Brian
    The vein structure in the sclera, the white and opaque outer protective covering of the eye, is anecdotally stable over time and unique to each person. As a result, it is well suited for use as a biometric for human identification. A few researchers have performed sclera vein pattern recognition and have reported promising, but low accuracy, initial results. Sclera recognition poses several challenges: the vein structure moves and deforms with the movement of the eye and its surrounding tissues; images of sclera patterns are often defocused and/or saturated; and, most importantly, the vein structure in the sclera is multi-layered and has complex non-linear deformation. The previous approaches in sclera recognition have treated the sclera patterns as a one-layered vein structure, and, as a result, their sclera recognition accuracy is not high. In this thesis, we propose a new method for sclera recognition with the following contributions: First, we developed a color-based sclera region estimation scheme for sclera segmentation. Second, we designed a Gabor wavelet based sclera pattern enhancement method, and an adaptive thresholding method to emphasize and binarize the sclera vein patterns. Third, we proposed a line descriptor based feature extraction, registration, and matching method that is scale-, orientation-, and deformation-invariant, and can mitigate the multi-layered deformation effects and tolerate segmentation error. It is empirically verified using the UBIRIS and IUPUI multi-wavelength databases that the proposed method can perform accurate sclera recognition. In addition, the recognition results are compared to iris recognition algorithms, with very comparable results.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University