ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Sciatic Nerve"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Spatially- and temporally-controlled postnatal p53 knockdown cooperates with embryonic Schwann cell precursor Nf1 gene loss to promote malignant peripheral nerve sheath tumor formation
    (Impact Journals, LLC, 2016-02-16) Hirbe, Angela C.; Dahiya, Sonika; Friedmann-Morvinski, Dinorah; Verma, Inder M.; Clapp, D. Wade; Gutmann, David H.; Department of Pediatrics, IU School of Medicine
    Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive sarcomas that arise sporadically or in association with the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. In individuals with NF1, MPNSTs are hypothesized to arise from Nf1-deficient Schwann cell precursor cells following the somatic acquisition of secondary cooperating genetic mutations (e.g., p53 loss). To model this sequential genetic cooperativity, we coupled somatic lentivirus-mediated p53 knockdown in the adult right sciatic nerve with embryonic Schwann cell precursor Nf1 gene inactivation in two different Nf1 conditional knockout mouse strains. Using this approach, ~60% of mice with Periostin-Cre-mediated Nf1 gene inactivation (Periostin-Cre; Nf1(flox/flox) mice) developed tumors classified as low-grade MPNSTs following p53 knockdown (mean, 6 months). Similarly, ~70% of Nf1+/- mice with GFAP-Cre-mediated Nf1 gene inactivation (GFAP-Cre; Nf1(flox/null) mice) developed low-grade MPNSTs following p53 knockdown (mean, 3 months). In addition, wild-type and Nf1+/- mice with GFAP-Cre-mediated Nf1 loss develop MPNSTs following somatic p53 knockout with different latencies, suggesting potential influences of Nf1+/- stromal cells in MPNST pathogenesis. Collectively, this new MPNST model system permits the analysis of somatically-acquired events as well as tumor microenvironment signals that potentially cooperate with Nf1 loss in the development and progression of this deadly malignancy.
  • Loading...
    Thumbnail Image
    Item
    Studies on fast axoplasmic transport in mammalian nerve metabolic aspects
    (1972) Smith, Carolyn Beebe
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University