- Browse by Subject
Browsing by Subject "Sarcoplasmic reticulum"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Carvedilol Analogue Modulates both Basal and Stimulated Sinoatrial Node Automaticity(Springer, 2014-05) Shinohara, Tetsuji; Kim, Daehyeok; Joung, Boyoung; Maruyama, Mitsunori; Vembaiyan, Kannan; Back, Thomas G.; Chen, Wayne; Chen, Peng-Sheng; Lin, Shien-Fong; Department of Medicine, IU School of MedicineThe membrane voltage clock and calcium (Ca(2+)) clock jointly regulate sinoatrial node (SAN) automaticity. VK-II-36 is a novel carvedilol analog that suppresses sarcoplasmic reticulum (SR) Ca(2+) release but does not block the β-receptor. The effect of VK-II-36 on SAN function remains unclear. The purpose of this study was to evaluate whether VK-II-36 can influence SAN automaticity by inhibiting the Ca(2+) clock. We simultaneously mapped intracellular Ca(2+) and membrane potential in 24 isolated canine right atriums using previously described criteria of the timing of late diastolic intracellular Ca elevation (LDCAE) relative to the action potential upstroke to detect the Ca(2+) clock. Pharmacological interventions with isoproterenol (ISO), ryanodine, caffeine, and VK-II-36 were performed after baseline recordings. VK-II-36 caused sinus rate downregulation and reduced LDCAE in the pacemaking site under basal conditions (P < 0.01). ISO induced an upward shift of the pacemaking site in SAN and augmented LDCAE in the pacemaking site. ISO also significantly and dose-dependently increased the sinus rate. The treatment of VK-II-36 (30 μmol/l) abolished both the ISO-induced shift of the pacemaking site and augmentation of LDCAE (P < 0.01), and it suppressed the ISO-induced increase in sinus rate (P = 0.02). Our results suggest that the sinus rate may be partly controlled by the Ca(2+) clock via SR Ca(2+) release during β-adrenergic stimulation.Item Investigating the molecular mechanism of phospholamban regulation of the Ca²-pump of cardiac sarcoplasmic reticulum(2010-12) Akin, Brandy Lee; Jones, Larry R.; Field, Loren J.; Hudmon, Andrew; Hurley, Thomas D., 1961-; Roach, Peter J.The Ca2+ pump or Ca2+-ATPase of cardiac sarcoplasmic reticulum, SERCA2a, is regulated by phospholamban (PLB), a small inhibitory phosphoprotein that decreases the apparent Ca2+ affinity of the enzyme. We propose that PLB decreases Ca2+ affinity by stabilizing the Ca2+-free, E2·ATP state of the enzyme, thus blocking the transition to E1, the high Ca2+ affinity state required for Ca2+ binding and ATP hydrolysis. The purpose of this dissertation research is to critically evaluate this idea using series of cross-linkable PLB mutants of increasing inhibitory strength (N30C-PLB < PLB3 < PLB4). Three hypotheses were tested; each specifically designed to address a fundamental point in the mechanism of PLB action. Hypothesis 1: SERCA2a with PLB bound is catalytically inactive. The catalytic activity of SERCA2a irreversibly cross-linked to PLB (PLB/SER) was assessed. Ca2+-ATPase activity, and formation of the phosphorylated intermediates were all completely inhibited. Thus, PLB/SER is entirely catalytically inactive. Hypothesis 2: PLB decreases the Ca2+ affinity of SERCA2a by competing with Ca2+ for binding to SERCA2a. The functional effects of N30C-PLB, PLB3, and PLB4 on Ca2+-ATPase activity and phosphoenzyme formation were measured, and correlated with their binding interactions with SERCA2a measured by chemical cross-linking. Successively higher Ca2+ concentrations were required to both activate the enzyme co-expressed with N30C-PLB, PLB3, and PLB4 and to dissociate N30C-PLB, PLB3, and PLB4 from SERCA2a, suggesting competition between PLB and Ca2+ for binding to SERCA2a. This was confirmed with the Ca2+ pump mutant, D351A, which is catalytically inactive but retains strong Ca2+ binding. Increasingly higher Ca2+ concentrations were also required to dissociate N30C-PLB, PLB3, and PLB4 from D351A, demonstrating directly that PLB competes with Ca2+ for binding to the Ca2+ pump. Hypothesis 3: PLB binds exclusively to the Ca2+-free E2 state with bound nucleotide (E2·ATP). Thapsigargin, vanadate, and nucleotide effects on PLB cross-linking to SERCA2a were determined. All three PLB mutants bound preferentially to E2 state with bound nucleotide (E2·ATP), and not at all to the thapsigargin or vanadate bound states. We conclude that PLB inhibits SERCA2a activity by stabilizing a unique E2·ATP conformation that cannot bind Ca2+.Item JNK2, A Newly-Identified SERCA2 Enhancer, Augments an Arrhythmic [Ca2+]SR Leak-Load Relationship(American Heart Association, 2021) Yan, Jiajie; Bare, Dan J.; DeSantiago, Jaime; Zhao, Weiwei; Mei, Yiming; Chen, Zhenhui; Ginsburg, Kenneth; Solaro, R. John; Wolska, Beata M.; Bers, Donald M.; Chen, S. R. Wayne; Ai, Xun; Medicine, School of MedicineRationale: We recently discovered pivotal contributions of stress kinase JNK2 (c-Jun N-terminal kinase isoform 2) in increased risk of atrial fibrillation through enhanced diastolic sarcoplasmic reticulum (SR) calcium (Ca2+) leak via RyR2 (ryanodine receptor isoform 2). However, the role of JNK2 in the function of the SERCA2 (SR Ca2+-ATPase), essential in maintaining SR Ca2+ content cycling during each heartbeat, is completely unknown. Objective: To test the hypothesis that JNK2 increases SERCA2 activity SR Ca2+ content and exacerbates an arrhythmic SR Ca2+ content leak-load relationship. Methods and results: We used confocal Ca2+ imaging in myocytes and HEK-RyR2 (ryanodine receptor isoform 2-expressing human embryonic kidney 293 cells) cells, biochemistry, dual Ca2+/voltage optical mapping in intact hearts from alcohol-exposed or aged mice (where JNK2 is activated). We found that JNK2, but not JNK1 (c-Jun N-terminal kinase isoform 1), increased SERCA2 uptake and consequently elevated SR Ca2+ content load. JNK2 also associates with and phosphorylates SERCA2 proteins. JNK2 causally enhances SERCA2-ATPase activity via increased maximal rate, without altering Ca2+ affinity. Unlike the CaMKII (Ca2+/calmodulin-dependent kinase II)-dependent JNK2 action in SR Ca2+ leak, JNK2-driven SERCA2 function was CaMKII independent (not prevented by CaMKII inhibition). With CaMKII blocked, the JNK2-driven SR Ca2+ loading alone did not significantly raise leak. However, with JNK2-CaMKII-driven SR Ca2+ leak present, the JNK2-enhanced SR Ca2+ uptake limited leak-induced reduction in SR Ca2+, normalizing Ca2+ transient amplitude, but at a higher arrhythmogenic SR Ca2+ leak. JNK2-specific inhibition completely normalized SR Ca2+ handling, attenuated arrhythmic Ca2+ activities, and alleviated atrial fibrillation susceptibility in aged and alcohol-exposed myocytes and intact hearts. Conclusions: We have identified a novel JNK2-induced activation of SERCA2. The dual action of JNK2 in CaMKII-dependent arrhythmic SR Ca2+ leak and a CaMKII-independent uptake exacerbates atrial arrhythmogenicity, while helping to maintain normal levels of Ca2+ transients and heart function. JNK2 modulation may be a novel therapeutic target for atrial fibrillation prevention and treatment.Item Novel Roles of p21 in Apoptosis During Beta-Cell Stress in Diabetes(2014) Hernández-Carretero, Angelina M.; Fueger, Patrick T.; Sturek, Michael Stephen; Wek, Ronald C.; Evans-Molina, Carmella; Elmendorf, Jeffrey S.Type 2 diabetes manifests from peripheral insulin resistance and a loss of functional beta cell mass due to decreased beta cell function, survival, and/or proliferation. Beta cell stressors impair each of these factors by activating stress response mechanisms, including endoplasmic reticulum (ER) stress. The glucolipotoxic environment of the diabetic milieu also activates a stress response in beta cells, resulting in death and decreased survival. Whereas the cell cycle machinery (comprised of cyclins, kinases, and inhibitors) regulates proliferation, its involvement during beta cell stress in the development of diabetes is not well understood. Interestingly, in a screen of multiple cell cycle inhibitors, p21 was dramatically upregulated in INS-1-derived 832/13 cells and rodent islets by two independent pharmacologic inducers of beta cell stress - dexamethasone and thapsigargin. In addition, glucolipotoxic stress mimicking the diabetic milieu also induced p21. To further investigate p21’s role in the beta cell, p21 was adenovirally overexpressed in 832/13 cells and rat islets. As expected given p21’s role as a cell cycle inhibitor, p21 overexpression decreased [3H]-thymidine incorporation and blocked the G1/S and G2/M transitions as quantified by flow cytometry. Interestingly, p21 overexpression activated apoptosis, demonstrated by increased annexin- and propidium iodide-double-positive cells and cleaved caspase-3 protein. p21-mediated caspase-3 cleavage was inhibited by either overexpression of the anti-apoptotic mitochondrial protein Bcl-2 or siRNA-mediated suppression of the pro-apoptotic proteins Bax and Bak. Therefore, the intrinsic apoptotic pathway is central for p21-mediated cell death. Like glucolipotoxicity, p21 overexpression inhibited the insulin cell survival signaling pathway while also impairing glucose-stimulated insulin secretion, an index of beta cell function. Under both conditions, phosphorylation of insulin receptor substrate-1, Akt, and Forkhead box protein-O1 was reduced. p21 overexpression increased Bim and c-Jun N-terminal Kinase, however, siRNA-mediated reduction or inhibition of either protein, respectively, did not alter p21-mediated cell death. Importantly, islets of p21-knockout mice treated with the ER stress inducer thapsigargin displayed a blunted apoptotic response. In summary, our findings indicate that p21 decreases proliferation, activates apoptosis, and impairs beta cell function, thus being a potential target to inhibit for the protection of functional beta cell mass.Item Selective sinoatrial node optical mapping and the mechanism of sinus rate acceleration(J-Stage, 2012) Shinohara, Tetsuji; Park, Hyung-Wook; Joung, Boyoung; Maruyama, Mitsunori; Chua, Su-Kiat; Han, Seongwook; Shen, Mark J.; Chen, Peng-Sheng; Lin, Shien-Fong; Department of Medicine, IU School of MedicineBACKGROUND: Studies using isolated sinoatrial node (SAN) cells indicate that rhythmic spontaneous sarcoplasmic reticulum calcium release (Ca clock) plays an important role in SAN automaticity. In the intact SAN, cross-contamination of optical signals from the SAN and the right atrium (RA) prevent the definitive testing of Ca clock hypothesis. The aim of this study was to use a novel approach to selectively mapping the intact SAN to examine the Ca clock mechanism. METHODS AND RESULTS: We simultaneously mapped intracellular Ca (Ca(i)) and membrane potential (V(m)) in 10 isolated, Langendorff-perfused normal canine RAs. The excitability of the RA was suppressed with high-potassium Tyrode's solution, allowing selective optical mapping of V(m) and Ca(i) of the SAN. Isoproterenol (ISO, 0.03 µmol/L) decreased the cycle length of the sinus beats, and shifted the leading pacemaker site from the middle or inferior SAN to the superior SAN in all RAs. The Ca(i) upstroke preceded the V(m) in the leading pacemaker site by up to 18 ± 2 ms. ISO-induced changes to SAN were inhibited by ryanodine (3 µmol/L), but not ZD7288 (3 µmol/L), a selective I(f) blocker. CONCLUSIONS: We conclude that, in the isolated canine RA, a high extracellular potassium concentration can suppress atrial excitability thus leading to SAN-RA conduction block, allowing selective optical mapping of the intact SAN. Acceleration of Ca cycling in the superior SAN underlies the mechanism of sinus tachycardia during sympathetic stimulation.Item SERCA2a overexpression improves muscle function in a canine Duchenne muscular dystrophy model(Elsevier, 2024-05-20) Kodippili, Kasun; Hakim, Chady H.; Burke, Matthew J.; Yue, Yongping; Teixeira, James A.; Zhang, Keqing; Yao, Gang; Babu, Gopal J.; Herzog, Roland W.; Duan, Dongsheng; Pediatrics, School of MedicineExcessive cytosolic calcium accumulation contributes to muscle degeneration in Duchenne muscular dystrophy (DMD). Sarco/endoplasmic reticulum calcium ATPase (SERCA) is a sarcoplasmic reticulum (SR) calcium pump that actively transports calcium from the cytosol into the SR. We previously showed that adeno-associated virus (AAV)-mediated SERCA2a therapy reduced cytosolic calcium overload and improved muscle and heart function in the murine DMD model. Here, we tested whether AAV SERCA2a therapy could ameliorate muscle disease in the canine DMD model. 7.83 × 1013 vector genome particles of the AAV vector were injected into the extensor carpi ulnaris (ECU) muscles of four juvenile affected dogs. Contralateral ECU muscles received excipient. Three months later, we observed widespread transgene expression and significantly increased SERCA2a levels in the AAV-injected muscles. Treatment improved SR calcium uptake, significantly reduced calpain activity, significantly improved contractile kinetics, and significantly enhanced resistance to eccentric contraction-induced force loss. Nonetheless, muscle histology was not improved. To evaluate the safety of AAV SERCA2a therapy, we delivered the vector to the ECU muscle of adult normal dogs. We achieved strong transgene expression without altering muscle histology and function. Our results suggest that AAV SERCA2a therapy has the potential to improve muscle performance in a dystrophic large mammal.