- Browse by Subject
Browsing by Subject "Salubrinal"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chondroprotective effects of Salubrinal in a mouse model of osteoarthritis(The British Editorial Society of Bone & Joint Surgery, 2015-05) Hamamura, K.; Nishimura, A.; Iino, T.; Takigawa, S.; Sudo, A.; Yokota, H.; Department of Engineering Technology, School of Engineering and TechnologyOBJECTIVES: Salubrinal is a synthetic agent that elevates phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and alleviates stress to the endoplasmic reticulum. Previously, we reported that in chondrocytes, Salubrinal attenuates expression and activity of matrix metalloproteinase 13 (MMP13) through downregulating nuclear factor kappa B (NFκB) signalling. We herein examine whether Salubrinal prevents the degradation of articular cartilage in a mouse model of osteoarthritis (OA). METHODS: OA was surgically induced in the left knee of female mice. Animal groups included age-matched sham control, OA placebo, and OA treated with Salubrinal or Guanabenz. Three weeks after the induction of OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At three and six weeks, the femora and tibiae were isolated and the sagittal sections were stained with Safranin O. RESULTS: Salubrinal suppressed the progression of OA by downregulating p-NFκB p65 and MMP13. Although Guanabenz elevates the phosphorylation level of eIF2α, it did not suppress the progression of OA. CONCLUSIONS: Administration of Salubrinal has chondroprotective effects in arthritic joints. Salubrinal can be considered as a potential therapeutic agent for alleviating symptoms of OA. Cite this article: Bone Joint Res 2015;4:84-92.Item Enhancement of osteoblastogenesis and suppression of osteoclastogenesis by inhibition of de-phosphorylation of eukaryotic translation initiation factor 2 alpha(Smart Science and Technology, LLC, 2015) Hamamura, Kazunori; Chen, Andy; Yokota, Hiroki; Department of Anatomy and Cell Biology, IU School of MedicineThe phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) is activated in response to various stresses such as viral infection, nutrient deprivation, and stress to the endoplasmic reticulum. Severe stress to the endoplasmic reticulum, for instance, induces an apoptotic pathway, while mild stress, on the contrary, leads to a pro-survival pathway. Little has been known about the elaborate role of eIF2α phosphorylation in the development of bone-forming osteoblasts and bone-resorbing osteoclasts. Using salubrinal and guanabenz as inhibitors of the de-phosphorylation of eIF2α, we have recently reported that the phosphorylation of eIF2α significantly alters fates of both osteoblasts and osteoclasts. Based on our recent findings, we review in this research highlight the potential mechanisms of the enhancement of osteoblastogenesis and the suppression of osteoclastogenesis through the elevated level of phosphorylated eIF2α.