- Browse by Subject
Browsing by Subject "Safety learning"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Juvenile stress facilitates safety learning in male and female high alcohol preferring mice(Elsevier, 2021) Müller, Iris; Adams, Demitra D.; Sangha, Susan; Chester, Julia A.; Psychology, School of ScienceAdversities during juvenility increase the risk for stress-related disorders, such as post-traumatic stress disorder (PTSD) and alcohol use disorder. However, stress can also induce coping mechanisms beneficial for later stressful experiences. We reported previously that mice selectively bred for high alcohol preference (HAP) exposed to stress during adolescence (but not during adulthood) showed enhanced fear-conditioned responses in adulthood, as measured by fear-potentiated startle (FPS). However, HAP mice also showed enhanced responding to safety cues predicting the absence of foot shocks in adulthood. Here, we pursue these findings in HAP mice by investigating in further detail how juvenile stress impacts the acquisition of safety and fear learning. HAP mice were subjected to three days of juvenile stress (postnatal days 25, 27, 28) and discriminative safety/fear conditioning in adulthood. FPS was used to assess safety versus fear cue discrimination, fear learning, and fear inhibition by the safety cue. Both stressed and unstressed HAP mice were able to discriminate between both cues as well as learn the fear cue-shock association. Interestingly, it was only the previously stressed mice that were able to inhibit their fear response when the fear cue was co-presented with the safety cue, thus demonstrating safety learning. We also report an incidental finding of alopecia in the juvenile stress groups, a phenotype seen in stress-related disorders. These results in HAP mice may be relevant to understanding the influence of juvenile trauma for individual risk and resilience toward developing PTSD and how individuals might benefit from safety cues in behavioral psychotherapy.Item Psychosocial impairment following mild blast-induced traumatic brain injury in rats(Elsevier, 2021) Race, Nicholas S.; Andrews, Katharine D.; Lungwitz, Elizabeth A.; Vega Alvarez, Sasha M.; Warner, Timothy R.; Acosta, Glen; Cao, Jiayue; Lu, Kun-Han; Liu, Zhongming; Dietrich, Amy D.; Majumdar, Sreeparna; Shekhar, Anantha; Truitt, William A.; Shi, Riyi; Anatomy, Cell Biology and Physiology, School of MedicineTraumatic brain injury (TBI) is associated with increased risk for mental health disorders, impacting post-injury quality of life and societal reintegration. TBI is also associated with deficits in psychosocial processing, defined as the cognitive integration of social and emotional behaviors, however little is known about how these deficits manifest and their contributions to post-TBI mental health. In this pre-clinical investigation using rats, a single mild blast TBI (mbTBI) induced impairment of psychosocial processing in the absence of confounding physical polytrauma, post-injury motor deficits, affective abnormalities, or deficits in non-social behavior. Impairment severity correlated with acute upregulations of a known oxidative stress metabolite, 3-hydroxypropylmercapturic acid (3-HPMA), in urine. Resting state fMRI alterations in the acute post-injury period implicated key brain regions known to regulate psychosocial behavior, including orbitofrontal cortex (OFC), which is congruent with our previous report of elevated acrolein, a marker of neurotrauma and 3-HPMA precursor, in this region following mbTBI. OFC of mbTBI-exposed rats demonstrated elevated mRNA expression of metabotropic glutamate receptors 1 and 5 (mGluR1/5) and injection of mGluR1/5-selective agonist in OFC of uninjured rats approximated mbTBI-induced psychosocial processing impairment, demonstrating a novel role for OFC in this psychosocial behavior. Furthermore, OFC may serve as a hotspot for TBI-induced disruption of psychosocial processing and subsequent mental health disorders.