- Browse by Subject
Browsing by Subject "SUDEP"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Intraperitoneal injection of lipopolysaccharide prevents seizure-induced respiratory arrest in a DBA/1 mouse model of SUDEP(Wiley, 2020-05-31) Adhikari, Yadav; Jin, Xiaoming; Anatomy and Cell Biology, School of MedicineObjective Sudden unexpected death in epilepsy (SUDEP) is the cause of premature death of 50% patients with chronic refractory epilepsy. Respiratory failure during seizures is regarded as an important mechanism of SUDEP. Previous studies have shown that abnormal serotonergic neurotransmission is involved in the pathogenesis of seizure‐induced respiratory failure, while enhancing serotonergic neurotransmission in the brainstem suppresses it. Because peripheral inflammation is known to enhance serotonergic neuron activation and 5‐HT synthesis and release, we investigated the effect of intraperitoneal lipopolysaccharide (LPS)‐induced inflammation on the S‐IRA susceptibility during audiogenic seizures in DBA/1 mice. Methods After DBA/1 mice were primed by exposing to sound stimulation for three consecutive days, they were tested for seizure severity and seizure‐induced respiratory arrest (S‐IRA) induced by sound stimulation under different conditions. We determined the dose and time course of the effects of intraperitoneal administration of LPS on audiogenic seizures and S‐IRA. The effects of blocking TLR4 or RAGE receptors and blocking 5‐HT receptors on the LPS‐induced effect on S‐IRA were investigated. Statistical significance was evaluated using the Kruskal‐Wallis test. Results Intraperitoneal injection of LPS significantly had dose‐dependent effects in reducing the incidence of S‐IRA as well as seizure severity in DBA/1 mice. The protective effect of LPS on S‐IRA peaked at 8‐12 hours after LPS injection and was related to both reducing seizure severity and enhancing autoresuscitation. Blocking TLR4 or RAGE receptor with TAK‐242 or FPS‐ZM1, respectively, prior to LPS injection attenuated its effects on S‐IRA and seizure severity. Injection of a nonselective 5‐HT receptor antagonist, cyproheptadine, or a 5‐HT3 receptor antagonist, ondansetron, was effective in blocking LPS‐induced effect on S‐IRA. Immunostaining results showed a significant increase in c‐Fos‐positive serotonergic neurons in the dorsal raphe. Significance This is the first study that demonstrates the effect of intraperitoneal LPS injection‐induced inflammation on reducing S‐IRA susceptibility and provides additional evidence supporting the serotonin hypothesis on SUDEP. Our study suggests that inflammation may enhance brainstem 5‐HT neurotransmission to promote autoresuscitation during seizure and prevent SUDEP.Item Novel Strategies for the Prevention of Post-Stroke Epilepsy and Sudden Unexpected Death in Epilepsy Patients(2022-10) Adhikari, Yadav Prasad; Truitt, William; Witkin, Jeffrey M.; Gupta, Kunal; Brutkiewicz, Randy; Jin, XiaomingStroke is the second leading cause of mortality worldwide, accounting for 5.5 million deaths annually. In addition to its high mortality rate, stroke is the most common cause of acquired epilepsy. Three to thirty percent of stroke survivors develop post-stroke epilepsy. Although currently available therapies such as thrombolytics and mechanical thrombectomy prevent immediate mortality by restoring blood flow after stroke, these treatments do not target the cellular and molecular mechanisms that lead to post-stroke epileptogenesis. With the increasing number of stroke survivors, there is an urgent need for therapies that prevent epilepsy development in this population. Here, we showed that homeostatic plasticity is involved in the development of hyperexcitability after stroke and can be targeted to prevent the development of post-stroke epilepsy. Using two-photon calcium imaging, we found that homeostatic regulation leads to cortical hyperexcitability after stroke. We also found that activity enhancement by optogenetic and pharmacological approaches can target homeostatic plasticity to prevent post-stroke epilepsy. This study demonstrates the high translational potential of activity enhancement as a novel strategy to prevent post-stroke epilepsy through regulating cortical homeostatic plasticity. Sudden premature death is a leading cause of death in patients with medically refractory epilepsy. This unanticipated death of a relatively healthy person with epilepsy in which no structural or toxicological cause of death can be identified after postmortem analysis is referred to as sudden unexpected death in epilepsy patients (SUDEP). Respiratory failure during seizures is an important underlying mechanism of SUDEP. Here, we showed that LPS-induced peripheral inflammation is protective against SUDEP. This protection is mediated at least in part via enhancing serotonergic function in the brain stem. To the best of our knowledge, this is the first study demonstrating the relationship between peripheral inflammation and SUDEP prevention.Item Small cohort of patients with epilepsy showed increased activity on Facebook before sudden unexpected death(Elsevier, 2022-03) Wood, Ian B.; Correia, Rion Brattig; Miller, Wendy R.; Rocha, Luis M.; School of NursingSudden Unexpected Death in Epilepsy (SUDEP) remains a leading cause of death in people with epilepsy. Despite the constant risk for patients and bereavement to family members, to date the physiological mechanisms of SUDEP remain unknown. Here we explore the potential to identify putative predictive signals of SUDEP from online digital behavioral data using text and sentiment analysis tools. Specifically, we analyze Facebook timelines of six patients with epilepsy deceased due to SUDEP, donated by surviving family members. We find preliminary evidence for behavioral changes detectable by text and sentiment analysis tools. Namely, in the months preceding their SUDEP event patient social media timelines show: i) increase in verbosity; ii) increased use of functional words; and iii) sentiment shifts as measured by different sentiment analysis tools. Combined, these results suggest that social media engagement, as well as its sentiment, may serve as possible early-warning signals for SUDEP in people with epilepsy. While the small sample of patient timelines analyzed in this study prevents generalization, our preliminary investigation demonstrates the potential of social media data as complementary data in larger studies of SUDEP and epilepsy.