ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "SRE"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Activation of Egr-1 expression in astrocytes by HIV-1 Tat: new insights into astrocyte-mediated Tat neurotoxicity
    (Springer Nature, 2011-03) Fan, Yan; Zou, Wei; Green, Linden A.; oh Kim, Byung; He, Johnny J.; Microbiology and Immunology, School of Medicine
    Human immunodeficiency virus type 1 (HIV-1) Tat plays an important role in HIV-associated neuropathogenesis; the underlying mechanisms are still evolving. We have recently shown that HIV-1 Tat induces expression of glial fibrillary acidic protein (GFAP), a characteristic of HIV-1 infection of the central nervous system (CNS). We have also shown that the Tat-induced GFAP expression in astrocytes is regulated by p300, and that deletion of the early growth response 1 (Egr-1) cis-transacting element within the p300 promoter abolishes Tat-induced GFAP expression. In this study, we further examined the relationship between Tat and Egr-1 in astrocytes. We found increased Egr-1 protein expression in Tat-expressing human astrocytoma cells and mouse primary astrocytes. Using the Egr-1 promoter-driven firefly luciferase reporter gene assay and the site-directed mutagenesis, we demonstrated that Tat increased Egr-1 expression by transactivating the Egr-1 promoter and involving specific serum response elements (SRE) within the promoter. Consistent with these data, we showed that Tat transactivation of the Egr-1 promoter was abrogated when astrocytes were cultured in serum-reduced media. Taken together, these results reveal that Tat directly transactivates Egr-1 expression and suggest that Tat interaction with Egr-1 is probably one of the very upstream molecular events that initiate Tat-induced astrocyte dysfunction and subsequent Tat neurotoxicity.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University