- Browse by Subject
Browsing by Subject "S-nitrosothiol"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Photolytic Measurement of Tissue S-Nitrosothiols in Rats and Humans In Vivo(MDPI, 2022-02) Neidigh, Noah; Alexander, Alyssa; van Emmerik, Parker; Higgs, Allison; Plack, Logan; Clem, Charles; Cater, Daniel; Marozkina, Nadzeya; Gaston, Benjamin; Pediatrics, School of MedicineS-nitrosothiols are labile thiol-NO adducts formed in vivo primarily by metalloproteins such as NO synthase, ceruloplasmin, and hemoglobin. Abnormal S-nitrosothiol synthesis and catabolism contribute to many diseases, ranging from asthma to septic shock. Current methods for quantifying S-nitrosothiols in vivo are suboptimal. Samples need to be removed from the body for analysis, and the S-nitrosothiols can be broken down during ex vivo processing. Here, we have developed a noninvasive device to measure mammalian tissue S-nitrosothiols in situ non-invasively using ultraviolet (UV) light, which causes NO release in proportion to the S-nitrosothiol concentration. We validated the assay in vitro; then, we applied it to measure S-nitrosothiols in vivo in rats and in humans. The method was sensitive to 0.5 µM, specific (did not detect other nitrogen oxides), and was reproducible in rats and in humans. This noninvasive approach to S-nitrosothiol measurements may be applicable for use in human diseases.Item S-nitroso-L-cysteine stereoselectively blunts the adverse effects of morphine on breathing and arterial blood gas chemistry while promoting analgesia(Elsevier, 2022) Getsy, Paulina M.; Young, Alex P.; Bates, James N.; Baby, Santhosh M.; Seckler, James M.; Grossfield, Alan; Hsieh, Yee-Hsee; Lewis, Tristan H.J.; Jenkins, Michael W.; Gaston, Benjamin; Lewis, Stephen J.; Pediatrics, School of MedicineS-nitrosothiols exert multiple effects on neural processes in the central and peripheral nervous system. This study shows that intravenous infusion of S-nitroso-L-cysteine (SNO-L-CYS, 1 μmol/kg/min) in anesthetized male Sprague Dawley rats elicits (a) sustained increases in minute ventilation, via increases in frequency of breathing and tidal volume, (b) a decrease in Alveolar-arterial (A-a) gradient, thus improving alveolar gas-exchange, (c) concomitant changes in arterial blood-gas chemistry, such as an increase in pO2 and a decrease in pCO2, (d) a decrease in mean arterial blood pressure (MAP), and (e) an increase in tail-flick (TF) latency (antinociception). Infusion of S-nitroso-D-cysteine (SNO-D-CYS, 1 μmol/kg/min, IV), did not elicit similar responses, except for a sustained decrease in MAP equivalent to that elicited by SNO-L-CYS. A bolus injection of morphine (2 mg/kg, IV) in rats receiving an infusion of vehicle elicited (a) sustained decreases in frequency of breathing tidal volume, and therefore minute ventilation, (b) a sustained decrease in MAP, (c) sustained decreases in pH, pO2 and maximal sO2 with sustained increases in pCO2 and A-a gradient, and (d) a sustained increase in TF latency. In rats receiving SNO-L-CYS infusion, morphine elicited markedly smaller changes in minute ventilation, arterial blood gas chemistry, A-a gradient and MAP. In contrast, the antinociceptive effects of morphine were enhanced in rats receiving the infusion of SNO-L-CYS. The morphine-induced responses in rats receiving SNO-D-CYS infusion were similar to vehicle-infused rats. These data are the first to demonstrate that infusion of an S-nitrosothiol, such as SNO-L-CYS, can stereoselectively ameliorate the adverse effects of morphine on breathing and alveolar gas exchange while promoting antinociception.Item S-Nitroso-L-Cysteine Stereoselectively Blunts the Deleterious Effects of Fentanyl on Breathing While Augmenting Antinociception in Freely-Moving Rats(Frontiers Media, 2022-05-26) Getsy, Paulina M.; Baby, Santhosh M.; Gruber, Ryan B.; Gaston, Benjamin; Lewis, Tristan H.J.; Grossfield, Alan; Seckler, James M.; Hsieh, Yee-Hsee; Bates, James N.; Lewis, Stephen J.; Pediatrics, School of MedicineEndogenous and exogenously administered S-nitrosothiols modulate the activities of central and peripheral systems that control breathing. We have unpublished data showing that the deleterious effects of morphine on arterial blood-gas chemistry (i.e., pH, pCO2, pO2, and sO2) and Alveolar-arterial gradient (i.e., index of gas exchange) were markedly diminished in anesthetized Sprague Dawley rats that received a continuous intravenous infusion of the endogenous S-nitrosothiol, S-nitroso-L-cysteine. The present study extends these findings by showing that unanesthetized adult male Sprague Dawley rats receiving an intravenous infusion of S-nitroso-L-cysteine (100 or 200 nmol/kg/min) markedly diminished the ability of intravenous injections of the potent synthetic opioid, fentanyl (10, 25, and 50 μg/kg), to depress the frequency of breathing, tidal volume, and minute ventilation. Our study also found that the ability of intravenously injected fentanyl (10, 25, and 50 μg/kg) to disturb eupneic breathing, which was measured as a marked increase of the non-eupneic breathing index, was substantially reduced in unanesthetized rats receiving intravenous infusions of S-nitroso-L-cysteine (100 or 200 nmol/kg/min). In contrast, the deleterious effects of fentanyl (10, 25, and 50 μg/kg) on frequency of breathing, tidal volume, minute ventilation and non-eupneic breathing index were fully expressed in rats receiving continuous infusions (200 nmol/kg/min) of the parent amino acid, L-cysteine, or the D-isomer, namely, S-nitroso-D-cysteine. In addition, the antinociceptive actions of the above doses of fentanyl as monitored by the tail-flick latency assay, were enhanced by S-nitroso-L-cysteine, but not L-cysteine or S-nitroso-D-cysteine. Taken together, these findings add to existing knowledge that S-nitroso-L-cysteine stereoselectively modulates the detrimental effects of opioids on breathing, and opens the door for mechanistic studies designed to establish whether the pharmacological actions of S-nitroso-L-cysteine involve signaling processes that include 1) the activation of plasma membrane ion channels and receptors, 2) selective intracellular entry of S-nitroso-L-cysteine, and/or 3) S-nitrosylation events. Whether alterations in the bioavailability and bioactivity of endogenous S-nitroso-L-cysteine is a key factor in determining the potency/efficacy of fentanyl on breathing is an intriguing question.