- Browse by Subject
Browsing by Subject "Ryanodine receptor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dietary Nitrate Enhances the Contractile Properties of Human Skeletal Muscle(Wolters Kluwer, 2018-10) Coggan, Andrew R.; Peterson, Linda R.; Cellular and Integrative Physiology, School of MedicineDietary nitrate, a source of nitric oxide (NO), improves the contractile properties of human muscle. We present the hypothesis that this is due to nitrosylation of the ryanodine receptor and increased NO signaling via the soluble guanyl cyclase-cyclic guanosine monophosphate-protein kinase G pathway, which together increase the free intracellular Ca concentration along with the Ca sensitivity of the myofilaments themselves.Item Endoplasmic reticulum stress alters ryanodine receptor function in the murine pancreatic β cell(American Society for Biochemistry and Molecular Biology, 2018-11-12) Yamamoto, Wataru R.; Bone, Robert N.; Sohn, Paul; Syed, Farooq; Reissaus, Christopher A.; Mosley, Amber L.; Wijeratne, Aruna B.; True, Jason D.; Tong, Xin; Kono, Kono; Evans-Molina, Carmella; Biochemistry and Molecular Biology, School of MedicineAlterations in endoplasmic reticulum (ER) calcium (Ca2+) levels diminish insulin secretion and reduce β-cell survival in both major forms of diabetes. The mechanisms responsible for ER Ca2+ loss in β cells remain incompletely understood. Moreover, a specific role for either ryanodine receptor (RyR) or inositol 1,4,5-triphosphate receptor (IP3R) dysfunction in the pathophysiology of diabetes remains largely untested. To this end, here we applied intracellular and ER Ca2+ imaging techniques in INS-1 β cells and isolated islets to determine whether diabetogenic stressors alter RyR or IP3R function. Our results revealed that the RyR is sensitive mainly to ER stress–induced dysfunction, whereas cytokine stress specifically alters IP3R activity. Consistent with this observation, pharmacological inhibition of the RyR with ryanodine and inhibition of the IP3R with xestospongin C prevented ER Ca2+ loss under ER and cytokine stress conditions, respectively. However, RyR blockade distinctly prevented β-cell death, propagation of the unfolded protein response (UPR), and dysfunctional glucose-induced Ca2+ oscillations in tunicamycin-treated INS-1 β cells and mouse islets and Akita islets. Monitoring at the single-cell level revealed that ER stress acutely increases the frequency of intracellular Ca2+ transients that depend on both ER Ca2+ leakage from the RyR and plasma membrane depolarization. Collectively, these findings indicate that RyR dysfunction shapes ER Ca2+ dynamics in β cells and regulates both UPR activation and cell death, suggesting that RyR-mediated loss of ER Ca2+ may be an early pathogenic event in diabetes.