- Browse by Subject
Browsing by Subject "Risk genes"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Association of the top 20 Alzheimer's disease risk genes with [18F]flortaucipir PET(Alzheimer’s Association, 2022-05-11) Stage, Eddie; Risacher, Shannon L.; Lane, Kathleen A.; Gao, Sujuan; Nho, Kwangsik; Saykin, Andrew J.; Apostolova, Liana G.; Alzheimer’s Disease Neuroimaging Initiative; Neurology, School of MedicineIntroduction: We previously reported genetic associations of the top Alzheimer's disease (AD) risk alleles with amyloid deposition and neurodegeneration. Here, we report the association of these variants with [18F]flortaucipir standardized uptake value ratio (SUVR). Methods: We analyzed the [18F]flortaucipir scans of 352 cognitively normal (CN), 160 mild cognitive impairment (MCI), and 54 dementia (DEM) participants from Alzheimer's Disease Neuroimaging Initiative (ADNI)2 and 3. We ran step-wise regression with log-transformed [18F]flortaucipir meta-region of interest SUVR as the outcome measure and genetic variants, age, sex, and apolipoprotein E (APOE) ε4 as predictors. The results were visualized using parametric mapping at familywise error cluster-level-corrected P < .05. Results: APOE ε4 showed significant (P < .05) associations with tau deposition across all disease stages. Other significantly associated genes include variants in ABCA7 in CN, CR1 in MCI, BIN1 and CASS4 in MCI and dementia participants. Discussion: We found significant associations to tau deposition for ABCA7, BIN1, CASS4, and CR1, in addition to APOE ε4. These four variants have been previously associated with tau metabolism through model systems.Item Characterization of gene expression patterns in mild cognitive impairment using a transcriptomics approach and neuroimaging endophenotypes(Wiley, 2022) Bharthur Sanjay, Apoorva; Patania, Alice; Yan, Xiaoran; Svaldi, Diana; Duran, Tugce; Shah, Niraj; Nemes, Sara; Chen, Eric; Apostolova, Liana G.; Neurology, School of MedicineIntroduction: Identification of novel therapeutics and risk assessment in early stages of Alzheimer's disease (AD) is a crucial aspect of addressing this complex disease. We characterized gene-expression patterns at the mild cognitive impairment (MCI) stage to identify critical mRNA measures and gene clusters associated with AD pathogenesis. Methods: We used a transcriptomics approach, integrating magnetic resonance imaging (MRI) and peripheral blood-based gene expression data using persistent homology (PH) followed by kernel-based clustering. Results: We identified three clusters of genes significantly associated with diagnosis of amnestic MCI. The biological processes associated with each cluster were mitochondrial function, NF-kB signaling, and apoptosis. Cluster-level associations with cortical thickness displayed canonical AD-like patterns. Driver genes from clusters were also validated in an external dataset for prediction of amyloidosis and clinical diagnosis. Discussion: We found a disease-relevant transcriptomic signature sensitive to prodromal AD and identified a subset of potential therapeutic targets associated with AD pathogenesis.Item The effect of the top 20 Alzheimer disease risk genes on gray-matter density and FDG PET brain metabolism(Elsevier, 2016-12-19) Stage, Eddie; Duran, Tugce; Risacher, Shannon L.; Goukasian, Naira; Do, Triet M.; West, John D.; Wilhalme, Holly; Nho, Kwangsik; Phillips, Meredith; Elashoff, David; Saykin, Andrew J.; Apostolova, Liana G.; Department of Neurology, IU School of MedicineINTRODUCTION: We analyzed the effects of the top 20 Alzheimer disease (AD) risk genes on gray-matter density (GMD) and metabolism. METHODS: We ran stepwise linear regression analysis using posterior cingulate hypometabolism and medial temporal GMD as outcomes and all risk variants as predictors while controlling for age, gender, and APOE ε4 genotype. We explored the results in 3D using Statistical Parametric Mapping 8. RESULTS: Significant predictors of brain GMD were SLC24A4/RIN3 in the pooled and mild cognitive impairment (MCI); ZCWPW1 in the MCI; and ABCA7, EPHA1, and INPP5D in the AD groups. Significant predictors of hypometabolism were EPHA1 in the pooled, and SLC24A4/RIN3, NME8, and CD2AP in the normal control group. DISCUSSION: Multiple variants showed associations with GMD and brain metabolism. For most genes, the effects were limited to specific stages of the cognitive continuum, indicating that the genetic influences on brain metabolism and GMD in AD are complex and stage dependent.