- Browse by Subject
Browsing by Subject "Retinoids"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item The Effect of Retinoids on the Regenerating Axolotl Spinal Cord(2014-04-11) Kirk, Maia P.; Chernoff, Ellen A.G.In order to further elucidate the mechanics of the retinoid pathway on Urodele spinal cord regeneration, we employed Antibody/Horseradish Peroxidase Staining of both intact and regenerating Axolotl spinal cord tissues obtained from adult and juvenile animals to determine expression of two retinoid pathway components: Cellular Retinoic Acid Binding Protein II (CRABP II) and Cellular Retinol Binding Protein I (CRBP I). Current results demonstrate that CRABP II is heavily expressed in the arachnoid mater meningeal layer; CRPB I, however, is expressed in the following locations: the pia mater meningeal layer, the nuclei and cytoplasm of gray matter neuroblasts, as well as processes derived from neuroblasts and ependyma. Moreover, the morphogenic nature of the retinoids may possess a significant role in the regeneration-permissive interaction of the meninges and ependyma of the Axolotl spinal cord.Item Retinoid orphan receptor gamma t (rorγt) promotes inflammatory eosinophilia but is dispensable for innate immune-mediated colitis(Public Library of Science, 2024-03-21) Torres-Huerta, Alvaro; Ruley-Haase, Katelyn; Reed, Theodore; Boger-May, Antonia; Rubadeux, Derek; Mayer, Lauren; Rajashekara, Arpitha Mysore; Hiller, Morgan; Frech, Madeleine; Roncagli, Connor; Pedersen, Cameron; Camacho, Mary Catherine; Hollmer, Lauren; English, Lauren; Kane, Grace; Boone, David L.; Microbiology and Immunology, School of MedicineInflammatory bowel diseases (IBD) result from uncontrolled inflammation in the intestinal mucosa leading to damage and loss of function. Both innate and adaptive immunity contribute to the inflammation of IBD and innate and adaptive immune cells reciprocally activate each other in a forward feedback loop. In order to better understand innate immune contributions to IBD, we developed a model of spontaneous 100% penetrant, early onset colitis that occurs in the absence of adaptive immunity by crossing villin-TNFAIP3 mice to RAG1-/- mice (TRAG mice). This model is driven by microbes and features increased levels of innate lymphoid cells in the intestinal mucosa. To investigate the role of type 3 innate lymphoid cells (ILC3) in the innate colitis of TRAG mice, we crossed them to retinoid orphan receptor gamma t deficient (Rorγt-/-) mice. Rorγt-/- x TRAG mice exhibited markedly reduced eosinophilia in the colonic mucosa, but colitis persisted in these mice. Colitis in Rorγt-/- x TRAG mice was characterized by increased infiltration of the intestinal mucosa by neutrophils, inflammatory monocytes, macrophages and other innate cells. RNA and cellular profiles of Rorγt-/- x TRAG mice were consistent with a lack of ILC3 and ILC3 derived cytokines, reduced antimicrobial factors, increased activation oof epithelial repair processes and reduced activation of epithelial cell STAT3. The colitis in Rorγt-/- x TRAG mice was ameliorated by antibiotic treatment indicating that microbes contribute to the ILC3-independent colitis of these mice. Together, these gene expression and cell signaling signatures reflect the double-edged sword of ILC3 in the intestine, inducing both proinflammatory and antimicrobial protective responses. Thus, Rorγt promotes eosinophilia but Rorγt and Rorγt-dependent ILC3 are dispensable for the innate colitis in TRAG mice.Item The role of retinoids in the regeneration of the axolotl spinal cord(2015-07-17) Kirk, Maia P.; Chernoff, Ellen A. G.; Belecky-Adams, Teri; Baucum II, A. J.Retinoids play an important role in tissue patterning during development as well as in epithelial formation and health. In the mammalian central nervous system, the meninges are a source of retinoids for brain tissue. Retinoid production has been described in juvenile Axolotl ependymal cells. Retinoid effects may possess a significant role in the regeneration-permissive interaction of the meninges and ependyma of the Axolotl spinal cord after penetrating injury. During spinal cord regeneration in urodele amphibians, the pattern of retinoid production changes as the meninges interact with the injury-reactive ependymal cells reconstructing the injured spinal cord. In order to determine which components of the retinoid metabolism and intracellular signaling pathway act in Urodele spinal cord regeneration, we employed antibody/horseradish peroxidase staining of both intact and regenerating Axolotl spinal cord tissues obtained from adult animals as well as cell culture techniques to determine expression of three retinoid pathway components: Cellular Retinoic Acid Binding Protein II (CRABP 2), Cellular Retinol Binding Protein I (CRBP 1), and Retinaldehyde Dehydrogenase II (RALDH 2). Current results demonstrate the following in the intact cord: 1) CRBP 1 is expressed in the pia and dura mater meningeal layers, in gray matter neurons (including their axonal processes), and the ependymal cell radial processes that produce the glia limitans, 2) CRABP 2 is expressed in the arachnoid and/or dura mater meningeal layers surrounding the spinal cord, and 3) RALDH 2 is expressed in the meninges as well as cytoplasm of grey matter neurons and some ependymal/sub-ependymal cells. In the regenerating cord, CRBP 1 is expressed in ependymal cells that are undergoing epithelial-to-mesenchymal transition (EMT), as is CRABP 2. RALDH 2 staining is very strong in the reactive meninges; in addition, expression is also upregulated in the cytoplasmic and perinuclear regions of reactive grey matter neurons, including motor neurons and in the apical region of ependymal. Preliminary studies culturing reactive meninges and ependymal cells together suggested that the meninges could drive re-epithelialization of the reactive ependymal cells. Experiments to characterize this interaction show an unusual proliferation pattern: Proliferating Cell Nuclear Antigen (PCNA) labeling is present in intact and regenerating cord ependymal cells. However, in culture, the presence of meninges results in no proliferation proximal to the explant, but extensive proliferation in leading cell outgrowth; also, the cultured meninges is positive for RALDH2. In summary, the intact adult cord shows meningeal production of RA, which is upregulated following injury; in addition, during this time, RA production is upregulated in the adult ependymal cells as well. In culture, the reactive meninges appears to modulate the behavior of reactive ependymal cells.