- Browse by Subject
Browsing by Subject "Retinal nerve fiber layer"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Association of Brain Volume and Retinal Thickness in the Early Stages of Alzheimer’s Disease(IOS Press, 2023) Mathew, Sunu; WuDunn, Darrell; Mackay, Devin D.; Vosmeier, Aaron; Tallman, Eileen F.; Deardorff, Rachael; Harris, Alon; Farlow, Martin R.; Brosch, Jared R.; Gao, Sujuan; Apostolova, Liana G.; Saykin, Andrew J.; Risacher, Shannon L.; Radiology and Imaging Sciences, School of MedicineBackground: The eye has been considered a 'window to the brain,' and several neurological diseases including neurodegenerative conditions like Alzheimer's disease (AD) also show changes in the retina. Objective: To investigate retinal nerve fiber layer (RNFL) thickness and its association with brain volume via magnetic resonance imaging (MRI) in older adults with subjective or objective cognitive decline. Methods: 75 participants underwent ophthalmological and neurological evaluation including optical coherence tomography and MRI (28 cognitively normal subjects, 26 with subjective cognitive decline, 17 patients diagnosed with mild cognitive impairment, and 4 with AD). Differences in demographics, thickness of RNFL, and brain volume were assessed using ANCOVA, while partial Pearson correlations, covaried for age and sex, were used to compare thickness of the peripapillary RNFL with brain volumes, with p < 0.05 considered statistically significant. Results: Mean RNFL thickness was significantly correlated with brain volumes, including global volume (right eye r = 0.235 p = 0.046, left eye r = 0.244, p = 0.037), temporal lobe (right eye r = 0.242 p = 0.039, left eye r = 0.290, p = 0.013), hippocampal (right eye r = 0.320 p = 0.005, left eye r = 0.306, p = 0.008), amygdala (left eye r = 0.332, p = 0.004), and occipital lobe (right eye r = 0.264 p = 0.024) volumes. Conclusion: RNFL thickness in both eyes was positively associated with brain volumes in subjects with subjective and objective cognitive decline. The RNFL, however, did not correlate with the disease, but the small sample number makes it important to conduct larger studies. RNFL thickness may be a useful non-invasive and inexpensive tool for detection of brain neurodegeneration and may assist with diagnosis and monitoring of progression and treatment in AD.Item Intraeye retinal nerve fiber layer and macular thickness asymmetry measurements for the discrimination of primary open-angle glaucoma and normal tension glaucoma(Elsevier, 2016-04) Khanal, Safal; Davey, Pinakin Gunvant; Racette, Lyne; Thapa, Madhu; Department of Ophthalmology, IU School of MedicinePURPOSE: The aim of this study was to evaluate the diagnostic capability of intraeye retinal nerve fiber layer (RNFL) thickness and macular thickness (MT) asymmetry measurements for the discrimination of normal tension glaucoma (NTG) and primary open-angle glaucoma (POAG) using spectral domain optical coherence tomography (SD-OCT). METHODS: A total of 90 subjects were enrolled including 30 consecutive healthy subjects, 30 consecutive subjects with POAG, and 30 consecutive subjects with NTG. RNFL thicknesses around the optic disc as well as MT measurements were taken with circular and radial SD-OCT scans. Intraeye retinal and MT asymmetry were calculated as the absolute difference between superior and inferior hemispheres of the eye using posterior pole asymmetry analysis protocol. Analysis of variance was used for comparison and areas under the receiver operating characteristic (AROC) were obtained for different parameters among the three diagnostic groups. RESULTS: There was a significant difference in MT asymmetry for all comparison groups (normal-NTG, p<0.05; normal-POAG, p<0.001; and NTG-POAG, p<0.001). Intraeye retinal nerve fiber thickness asymmetry measurements were not different between the groups (normal-NTG, p<0.187; normal-POAG, p<0.056; and NTG-POAG, p<0.837). The area under ROC curves exceeded 0.800 for all the studied parameters, including the MT asymmetry except for intraeye RNFL thickness asymmetry which had the lowest AROC as well as the least sensitivity for identifying subjects with NTG from normal (AROC=0.626, sensitivity=30%); POAG from normal (AROC=0.644, sensitivity=37%) and NTG from POAG (AROC=0.533, sensitivity=13%). CONCLUSION: The intraeye MT asymmetry holds significant potential as a distinguishing parameter for NTG and POAG.