- Browse by Subject
Browsing by Subject "Retinal diseases"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Challenges of cost-effectiveness analyses of novel therapeutics for Inherited Retinal Diseases(Elsevier, 2022) Jayasundera, K. Thiran; Abuzaitoun, Rebhi O.; Lacy, Gabrielle D.; Abalem, Maria Fernanda; Saltzman, Gregory M.; Ciulla, Thomas A.; Johnson, Mark W.; Ophthalmology, School of MedicinePurpose: To investigate the challenges and potential improvement strategies of cost-effectiveness analyses performed for therapeutics targeting inherited retinal diseases (IRDs). Design: Perspective. Methods: A literature review was conducted with discussion of current limitations and improvement recommendations. Results: Cost-effectiveness analysis (CEA) performed for IRD therapeutics has multiple limitations. First, the available methods used to measure health-related quality of life and health utilities can be inaccurate when used in IRDs. Second, the financial burden to patients and society from vision impairment associated with IRDs has been inadequately studied and includes a variety of expenditures ranging from direct costs of IRD specialty health care to indirect expenses associated with daily living activities. Third, our collective understanding is limited in the areas of IRD natural history and health benefits gained from new IRD treatments (eg, gene therapies). In addition, the therapeutic effect from a patient perspective and its duration of action are not fully understood. Due to the scarcity of data, CEA for newly approved therapies has relied on assumptions and creations of predictive models for both costs and health benefits for these new therapeutics in order to calculate the incremental cost-effectiveness ratio. Conclusions: CEA studies performed for IRD therapeutics have been limited by the established health utilities in ophthalmology and the lack of disease-specific information. The assumptions and extrapolations in these studies create substantial uncertainty in incremental cost-effectiveness ratio results. An improved framework is required for CEA of IRD therapeutics in order to determine the cost-effectiveness of each therapy brought from clinical trials to clinical practice.Item Expression profiling of the retina of pde6c, a zebrafish model of retinal degeneration(Nature Publishing group, 2017-12-12) Zhang, Liyun; Zhang, Xinlian; Zhang, Gaonan; Pang, Chi Pui; Leung, Yuk Fai; Zhang, Mingzhi; Zhong, Wenxuan; Biochemistry and Molecular Biology, School of MedicineRetinal degeneration often affects the whole retina even though the disease-causing gene is specifically expressed in the light-sensitive photoreceptors. The molecular basis of the retinal defect can potentially be determined by gene-expression profiling of the whole retina. In this study, we measured the gene-expression profile of retinas microdissected from a zebrafish pde6cw59 (pde6c) mutant. This retinal-degeneration model not only displays cone degeneration caused by a cone-specific mutation, but also other secondary cellular changes starting from 4 days postfertilization (dpf). To capture the underlying molecular changes, we subjected pde6c and wild-type (WT) retinas at 5 dpf/ 120 h postfertilization (hpf) to RNA sequencing (RNA-Seq) on the Illumina HiSeq 2,000 platform. We also validated the RNA-Seq results by Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) of seven phototransduction genes. Our analyses indicate that the RNA-Seq dataset was of high quality, and effectively captured the molecular changes in the whole pde6c retina. This dataset will facilitate the characterization of the molecular defects in the pde6c retina at the initial stage of retinal degeneration.