- Browse by Subject
Browsing by Subject "Respiratory system"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Interleukin-9 is Required for Allergic Airway Inflammation Mediated by the Cytokine Thymic Stromal Lymphopoietin(Elsevier, 2013) Yao, Weiguo; Zhang, Yanlu; Jabeen, Rukhsana; Nguyen, Evelyn T.; Wilkes, David S.; Tepper, Robert S.; Kaplan, Mark H.; Zhou, Baohua; Pediatrics, School of MedicineThymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine important for the initiation and development of T helper (Th2) cell-mediated allergic inflammation. In this study, we identified a positive association between interleukin-9 (IL-9) and TSLP concentration in the serum of infants with atopic dermatitis. In primary cell cultures, the addition of TSLP led to an increase in IL-9 production from human and mouse Th9 cells, and induced an increase in signal transducer and activator of transcription 5 (STAT5) activation and binding to the Il9 promoter. In vivo, use of an adoptive transfer model demonstrated that TSLP promoted IL-9-dependent, Th9 cell-induced allergic inflammation by acting directly on T cells. Moreover, transgenic expression of TSLP in the lung stimulated IL-9 production in vivo, and anti-IL-9 treatment attenuated TSLP-induced airway inflammation. Together, our results demonstrate that TSLP promotes Th9 cell differentiation and function and define a requirement for IL-9 in TSLP-induced allergic inflammation.Item Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination(American Association for the Advancement of Science, 2022) Tang, Jinyi; Zeng, Cong; Cox, Thomas M.; Li, Chaofan; Son, Young Min; Cheon, In Su; Wu, Yue; Behl, Supriya; Taylor, Justin J.; Chakraborty, Rana; Johnson, Aaron J.; Schiavo, Dante N.; Utz, James P.; Reisenauer, Janani S.; Midthun, David E.; Mullon, John J.; Edell, Eric S.; Alameh, Mohamad G.; Borish, Larry; Teague, William G.; Kaplan, Mark H.; Weissman, Drew; Kern, Ryan; Hu, Haitao; Vassallo, Robert; Liu, Shan-Lu; Sun, Jie; Microbiology and Immunology, School of MedicineSARS-CoV-2 mRNA vaccination induces robust humoral and cellular immunity in the circulation; however, it is currently unknown whether it elicits effective immune responses in the respiratory tract, particularly against variants of concern (VOCs), including Omicron. We compared the SARS-CoV-2 S-specific total and neutralizing antibody responses, and B and T cell immunity, in the bronchoalveolar lavage fluid (BAL) and blood of COVID-19-vaccinated individuals and hospitalized patients. Vaccinated individuals had significantly lower levels of neutralizing antibody against D614G, Delta (B.1.617.2), and Omicron BA.1.1 in the BAL compared with COVID-19 convalescents despite robust S-specific antibody responses in the blood. Furthermore, mRNA vaccination induced circulating S-specific B and T cell immunity, but in contrast to COVID-19 convalescents, these responses were absent in the BAL of vaccinated individuals. Using a mouse immunization model, we demonstrated that systemic mRNA vaccination alone induced weak respiratory mucosal neutralizing antibody responses, especially against SARS-CoV-2 Omicron BA.1.1 in mice; however, a combination of systemic mRNA vaccination plus mucosal adenovirus-S immunization induced strong neutralizing antibody responses not only against the ancestral virus but also the Omicron BA.1.1 variant. Together, our study supports the contention that the current COVID-19 vaccines are highly effective against severe disease development, likely through recruiting circulating B and T cell responses during reinfection, but offer limited protection against breakthrough infection, especially by the Omicron sublineage. Hence, mucosal booster vaccination is needed to establish robust sterilizing immunity in the respiratory tract against SARS-CoV-2, including infection by the Omicron sublineage and future VOCs.