- Browse by Subject
Browsing by Subject "Respiration"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism(Wiley, 2017-09) Kashyap, Des R.; Kuzma, Marcin; Kowalczyk, Dominik A.; Gupta, Dipika; Dziarski, Roman; Medicine, School of MedicineMammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn2+ through influx of extracellular Zn2+ ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy.Item Cardiovascular pharmacology of 9-tetrahydrocannabinol(1972) Milzoff, Joel RobertItem Characterization of the particulate and soluble respiratory NADH dehydrogenase of pig liver(1966) Sharp, Charles Wm.Item Chemoreception and neuroplasticity in respiratory circuits(Elsevier, 2017-01) Barnett, William H.; Abdala, Ana P.; Paton, Julian F. R.; Rybak, Ilya A.; Zoccal, Daniel B.; Molkov, Yaroslav I.; Mathematical Sciences, School of ScienceThe respiratory central pattern generator must respond to chemosensory cues to maintain oxygen (O2) and carbon dioxide (CO2) homeostasis in the blood and tissues. To do this, sensorial cells located in the periphery and central nervous system monitor the arterial partial pressure of O2 and CO2 and initiate respiratory and autonomic reflex adjustments in conditions of hypoxia and hypercapnia. In conditions of chronic intermittent hypoxia (CIH), repeated peripheral chemoreceptor input mediated by the nucleus of the solitary tract induces plastic changes in respiratory circuits that alter baseline respiratory and sympathetic motor outputs and result in chemoreflex sensitization, active expiration, and arterial hypertension. Herein, we explored the hypothesis that the CIH-induced neuroplasticity primarily consists of increased excitability of pre-inspiratory/inspiratory neurons in the pre-Bötzinger complex. To evaluate this hypothesis and elucidate neural mechanisms for the emergence of active expiration and sympathetic overactivity in CIH-treated animals, we extended a previously developed computational model of the brainstem respiratory-sympathetic network to reproduce experimental data on peripheral and central chemoreflexes post-CIH. The model incorporated neuronal connections between the 2nd-order NTS neurons and peripheral chemoreceptors afferents, the respiratory pattern generator, and sympathetic neurons in the rostral ventrolateral medulla in order to capture key features of sympathetic and respiratory responses to peripheral chemoreflex stimulation. Our model identifies the potential neuronal groups recruited during peripheral chemoreflex stimulation that may be required for the development of inspiratory, expiratory and sympathetic reflex responses. Moreover, our model predicts that pre-inspiratory neurons in the pre-Bötzinger complex experience plasticity of channel expression due to excessive excitation during peripheral chemoreflex. Simulations also show that, due to positive interactions between pre-inspiratory neurons in the pre-Bötzinger complex and expiratory neurons in the retrotrapezoid nucleus, increased excitability of the former may lead to the emergence of the active expiratory pattern at normal CO2 levels found after CIH exposure. We conclude that neuronal type specific neuroplasticity in the pre-Bötzinger complex induced by repetitive episodes of peripheral chemoreceptor activation by hypoxia may contribute to the development of sympathetic over-activity and hypertension.Item Deletion of mitochondrial calcium uniporter incompletely inhibits calcium uptake and induction of the permeability transition pore in brain mitochondria(American Society for Biochemistry and Molecular Biology, 2018-10-05) Hamilton, James; Brustovetsky, Tatiana; Rysted, Jacob E.; Lin, Zhihong; Usachev, Yuriy M.; Brustovetsky, Nickolay; Pharmacology and Toxicology, School of MedicineCa2+ influx into mitochondria is mediated by the mitochondrial calcium uniporter (MCU), whose identity was recently revealed as a 40-kDa protein that along with other proteins forms the mitochondrial Ca2+ uptake machinery. The MCU is a Ca2+-conducting channel spanning the inner mitochondrial membrane. Here, deletion of the MCU completely inhibited Ca2+ uptake in liver, heart, and skeletal muscle mitochondria. However, in brain nonsynaptic and synaptic mitochondria from neuronal somata/glial cells and nerve terminals, respectively, the MCU deletion slowed, but did not completely block, Ca2+ uptake. Under resting conditions, brain MCU-KO mitochondria remained polarized, and in brain MCU-KO mitochondria, the electrophoretic Ca2+ ionophore ETH129 significantly accelerated Ca2+ uptake. The residual Ca2+ uptake in brain MCU-KO mitochondria was insensitive to inhibitors of mitochondrial Na+/Ca2+ exchanger and ryanodine receptor (CGP37157 and dantrolene, respectively), but was blocked by the MCU inhibitor Ru360. Respiration of WT and MCU-KO brain mitochondria was similar except that for mitochondria that oxidized pyruvate and malate, Ca2+ more strongly inhibited respiration in WT than in MCU-KO mitochondria. Of note, the MCU deletion significantly attenuated but did not completely prevent induction of the permeability transition pore (PTP) in brain mitochondria. Expression level of cyclophilin D and ATP content in mitochondria, two factors that modulate PTP induction, were unaffected by MCU-KO, whereas ADP was lower in MCU-KO than in WT brain mitochondria. Our results suggest the presence of an MCU-independent Ca2+ uptake pathway in brain mitochondria that mediates residual Ca2+ influx and induction of PTP in a fraction of the mitochondrial population.Item The effect of mitochondrial calcium uniporter and cyclophilin D knockout on resistance of brain mitochondria to Ca2+-induced damage(Elsevier, 2021) Hamilton, James; Brustovetsky, Tatiana; Brustovetsky, Nickolay; Pharmacology and Toxicology, School of MedicineThe mitochondrial calcium uniporter (MCU) and cyclophilin D (CyD) are key players in induction of the permeability transition pore (PTP), which leads to mitochondrial depolarization and swelling, the major signs of Ca2+-induced mitochondrial damage. Mitochondrial depolarization inhibits ATP production, whereas swelling results in the release of mitochondrial pro-apoptotic proteins. The extent to which simultaneous deletion of MCU and CyD inhibits PTP induction and prevents damage of brain mitochondria is not clear. Here, we investigated the effects of MCU and CyD deletion on the propensity for PTP induction using mitochondria isolated from the brains of MCU-KO, CyD-KO, and newly created MCU/CyD-double knockout (DKO) mice. Neither deletion of MCU nor of CyD affected respiration or membrane potential in mitochondria isolated from the brains of these mice. Mitochondria from MCU-KO and MCU/CyD-DKO mice displayed reduced Ca2+ uptake and diminished extent of PTP induction. The Ca2+ uptake by mitochondria from CyD-KO mice was increased compared with mitochondria from WT mice. Deletion of CyD prevented mitochondrial swelling and resulted in transient depolarization in response to Ca2+, but it did not prevent Ca2+-induced delayed mitochondrial depolarization. Mitochondria from MCU/CyD-DKO mice did not swell in response to Ca2+, but they did exhibit mild sustained depolarization. Dibucaine, an inhibitor of the Ca2+-activated mitochondrial phospholipase A2, attenuated and bovine serum albumin completely eliminated the sustained depolarization. This suggests the involvement of phospholipase A2 and free fatty acids. Thus, in addition to induction of the classical PTP, alternative deleterious mechanisms may contribute to mitochondrial damage following exposure to elevated Ca2+.Item Effectiveness of implementing a wake up and breathe program on sedation and delirium in the ICU(Ovid Technologies (Wolters Kluwer) - Lippincott Williams & Wilkins, 2014-12) Khan, Babar A.; Fadel, William F.; Tricker, Jason L.; Carlos, W. Graham; Farber, Mark O.; Hui, Siu L.; Campbell, Noll L.; Ely, E. Wesley; Boustani, Malaz A.; Department of Medicine, IU School of MedicineOBJECTIVES: Mechanically ventilated critically ill patients receive significant amounts of sedatives and analgesics that increase their risk of developing coma and delirium. We evaluated the impact of a "Wake-up and Breathe Protocol" at our local ICU on sedation and delirium. DESIGN: A pre/post implementation study design. SETTING: A 22-bed mixed surgical and medical ICU. PATIENTS: Seven hundred two consecutive mechanically ventilated ICU patients from June 2010 to January 2013. INTERVENTIONS: Implementation of daily paired spontaneous awakening trials (daily sedation vacation plus spontaneous breathing trials) as a quality improvement project. MEASUREMENTS AND MAIN RESULTS: After implementation of our program, there was an increase in the mean Richmond Agitation Sedation Scale scores on weekdays of 0.88 (p < 0.0001) and an increase in the mean Richmond Agitation Sedation Scale scores on weekends of 1.21 (p < 0.0001). After adjusting for age, race, gender, severity of illness, primary diagnosis, and ICU, the incidence and prevalence of delirium did not change post implementation of the protocol (incidence: 23% pre vs 19.6% post; p = 0.40; prevalence: 66.7% pre vs 55.3% post; p = 0.06). The combined prevalence of delirium/coma decreased from 90.8% pre protocol implementation to 85% postimplementation (odds ratio, 0.505; 95% CI, 0.299-0.853; p = 0.01). CONCLUSIONS: Implementing a "Wake Up and Breathe Program" resulted in reduced sedation among critically ill mechanically ventilated patients but did not change the incidence or prevalence of delirium.Item Human CSF movement influenced by vascular low frequency oscillations and respiration(Frontiers Media, 2022-08-19) Nair, Vidhya Vijayakrishnan; Kish, Brianna R.; Inglis, Ben; Yang, Ho-Ching (Shawn); Wright, Adam M.; Wu, Yu-Chien; Zhou, Xiaopeng; Schwichtenberg, Amy J.; Tong, Yunjie; Radiology and Imaging Sciences, School of MedicineCerebrospinal fluid (CSF) movement through the pathways within the central nervous system is of high significance for maintaining normal brain health and function. Low frequency hemodynamics and respiration have been shown to drive CSF in humans independently. Here, we hypothesize that CSF movement may be driven simultaneously (and in synchrony) by both mechanisms and study their independent and coupled effects on CSF movement using novel neck fMRI scans. Caudad CSF movement at the fourth ventricle and hemodynamics of the major neck blood vessels (internal carotid arteries and internal jugular veins) was measured from 11 young, healthy volunteers using novel neck fMRI scans with simultaneous measurement of respiration. Two distinct models of CSF movement (1. Low-frequency hemodynamics and 2. Respiration) and possible coupling between them were investigated. We show that the dynamics of brain fluids can be assessed from the neck by studying the interrelationships between major neck blood vessels and the CSF movement in the fourth ventricle. We also demonstrate that there exists a cross-frequency coupling between these two separable mechanisms. The human CSF system can respond to multiple coupled physiological forces at the same time. This information may help inform the pathological mechanisms behind CSF movement-related disorders.Item Mutant Huntingtin and Elusive Defects in Oxidative Metabolism and Mitochondrial Calcium Handling .(Springer, 2016-07) Brustovetsky, Nickolay; Pharmacology and Toxicology, School of MedicineElongation of a polyglutamine (polyQ) stretch in huntingtin protein (Htt) is linked to Huntington's disease (HD) pathogenesis. The mutation in Htt correlates with neuronal dysfunction in the striatum and cerebral cortex and eventually leads to neuronal cell death. The exact mechanisms of the injurious effect of mutant Htt (mHtt) on neurons are not completely understood but might include aberrant gene transcription, defective autophagy, abnormal mitochondrial biogenesis, anomalous mitochondrial dynamics, and trafficking. In addition, deficiency in oxidative metabolism and defects in mitochondrial Ca(2+) handling are considered essential contributing factors to neuronal dysfunction in HD and, consequently, in HD pathogenesis. Since the discovery of the mutation in Htt, the questions whether mHtt affects oxidative metabolism and mitochondrial Ca(2+) handling and, if it does, what mechanisms could be involved were in focus of numerous investigations. However, despite significant research efforts, the detrimental effect of mHtt and the mechanisms by which mHtt might impair oxidative metabolism and mitochondrial Ca(2+) handling remain elusive. In this paper, I will briefly review studies aimed at clarifying the consequences of mHtt interaction with mitochondria and discuss experimental results supporting or arguing against the mHtt effects on oxidative metabolism and mitochondrial Ca(2+) handling.Item Oxidative metabolism and Ca2+ handling in striatal mitochondria from YAC128 mice, a model of Huntington's disease(Elsevier, 2017-10) Hamilton, James; Brustovetsky, Tatiana; Brustovetsky, Nickolay; Pharmacology and Toxicology, School of MedicineThe mechanisms implicated in the pathology of Huntington's disease (HD) remain not completely understood, although dysfunction of mitochondrial oxidative metabolism and Ca2+ handling have been suggested as contributing factors. However, in our previous studies with mitochondria isolated from the whole brains of HD mice, we found no evidence for defects in mitochondrial respiration and Ca2+ handling. In the present study, we used the YAC128 mouse model of HD to evaluate the effect of mHtt on respiratory activity and Ca2+ uptake capacity of mitochondria isolated from the striatum, the most vulnerable brain region in HD. Isolated, Percoll-gradient purified striatal mitochondria from YAC128 mice were free of cytosolic and ER contaminations, but retained attached mHtt. Both nonsynaptic and synaptic striatal mitochondria isolated from early symptomatic 2-month-old YAC128 mice had similar respiratory rates and Ca2+ uptake capacities compared with mitochondria from wild-type FVB/NJ mice. Consistent with the lack of difference in mitochondrial respiration, we found that the expression of several nuclear-encoded proteins in striatal mitochondria was similar between wild-type and YAC128 mice. Taken together, our data demonstrate that mHtt does not alter respiration and Ca2+ uptake capacity in striatal mitochondria isolated from YAC128 mice, suggesting that respiratory defect and Ca2+ uptake deficiency most likely do not contribute to striatal pathology associated with HD.