- Browse by Subject
Browsing by Subject "Reproductive tract infections"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Perforin is detrimental to controlling [corrected] C. muridarum replication in vitro, but not in vivo(Public Library of Science, 2013-05-14) Johnson, Raymond M.; Kerr, Micah S.; Slaven, James E.; Medicine, School of MedicineCD4 T cells are critical for clearing experimental Chlamydia muridarum genital tract infections. Two independent in vitro CD4 T cell mechanisms have been identified for terminating Chlamydia replication in epithelial cells. One mechanism, requiring IFN-γ and T cell-epithelial cell contact, terminates infection by triggering epithelial production of nitric oxide to chlamydiacidal levels; the second is dependent on T cell degranulation. We recently demonstrated that there are two independent in vivo clearance mechanisms singly sufficient for clearing genital tract infections within six weeks; one dependent on iNOS, the other on Plac8. Redundant genital tract clearance mechanisms bring into question negative results in single-gene knockout mice. Two groups have shown that perforin-knockout mice were not compromised in their ability to clear C. muridarum genital tract infections. Because cell lysis would be detrimental to epithelial nitric oxide production we hypothesized that perforin was not critical for iNOS-dependent clearance, but posited that perforin could play a role in Plac8-dependent clearance. We tested whether the Plac8-dependent clearance was perforin-dependent by pharmacologically inhibiting iNOS in perforin-knockout mice. In vitro we found that perforin was detrimental to iNOS-dependent CD4 T cell termination of Chlamydia replication in epithelial cells. In vivo, unexpectedly, clearance in perforin knockout mice was delayed to the end of week 7 regardless of iNOS status. The discordant in vitro/in vivo results suggest that the perforin's contribution to bacterial clearance in vivo is not though enhancing CD4 T cell termination of Chlamydia replication in epithelial cells, but likely via a mechanism independent of T cell-epithelial cell interactions.Item Plac8-dependent and iNOS-dependent mechanisms clear Chlamydia muridarum infections from the genital tract(Oxford University Press, 2012) Johnson, Raymond M.; Kerr, Micah S.; Slaven, James E.; Medicine, School of MedicineChlamydia trachomatis urogenital serovars replicate predominantly in genital tract epithelium. This tissue tropism poses a unique challenge for host defense and vaccine development. Studies utilizing the Chlamydia muridarum mouse model have shown that CD4 T cells are critical for clearing genital tract infections. In vitro studies have shown that CD4 T cells terminate infection by upregulating epithelial inducible NO synthase (iNOS) transcription and NO production. However, this mechanism is not critical, as iNOS-deficient mice clear infections normally. We recently showed that a subset of Chlamydia-specific CD4 T cell clones could terminate replication in epithelial cells using an iNOS-independent mechanism requiring T cell degranulation. We advance that work using microarrays to compare iNOS-dependent and iNOS-independent CD4 T cell clones. Plac8 was differentially expressed by clones having the iNOS-independent mechanism. Plac8-deficient mice had delayed clearance of infection, and Plac8-deficient mice treated with the iNOS inhibitor N-monomethyl-l-arginine were largely unable to resolve genital tract infections over 8 wk. These results demonstrate that there are two independent and redundant T cell mechanisms for clearing C. muridarum genital tract infections: one dependent on iNOS, and the other dependent on Plac8. Although T cell subsets are routinely defined by cytokine profiles, there may be important subdivisions by effector function, in this case CD4(Plac8).Item Toll-like receptor 3 (TLR3) promotes the resolution of Chlamydia muridarum genital tract infection in congenic C57BL/6N mice(Public Library of Science, 2018-04-06) Carrasco, Sebastian E.; Hu, Sishun; Imai, Denise M.; Kumar, Ramesh; Sandusky, George E.; Yang, X. Frank; Derbigny, Wilbert A.; Microbiology and Immunology, School of MedicineChlamydia trachomatis urogenital serovars primarily replicate in epithelial cells lining the reproductive tract. Epithelial cells recognize Chlamydia through cell surface and cytosolic receptors, and/or endosomal innate receptors such as Toll-like receptors (TLRs). Activation of these receptors triggers both innate and adaptive immune mechanisms that are required for chlamydial clearance, but are also responsible for the immunopathology in the reproductive tract. We previously demonstrated that Chlamydia muridarum (Cm) induces IFN-β in oviduct epithelial cells (OE) in a TLR3-dependent manner, and that the synthesis of several cytokines and chemokines are diminished in Cm-challenged OE derived from TLR3-/- 129S1 mice. Furthermore, our in vitro studies showed that Cm replication in TLR3-/- OE is more efficient than in wild-type OE. Because TLR3 modulates the release inflammatory mediators involved in host defense during Cm infection, we hypothesized that TLR3 plays a protective role against Cm-induced genital tract pathology in congenic C57BL/6N mice. Using the Cm mouse model for human Chlamydia genital tract infections, we demonstrated that TLR3-/- mice had increased Cm shedding during early and mid-stage genital infection. In early stage infection, TLR3-/- mice showed a diminished synthesis of IFN-β, IL-1β, and IL-6, but enhanced production of IL-10, TNF-α, and IFN-γ. In mid-stage infection, TLR3-/- mice exhibited significantly enhanced lymphocytic endometritis and salpingitis than wild-type mice. These lymphocytes were predominantly scattered along the endometrial stroma and the associated smooth muscle, and the lamina propria supporting the oviducts. Surprisingly, our data show that CD4+ T-cells are significantly enhanced in the genital tract TLR3-/- mice during mid-stage Chlamydial infection. In late-stage infections, both mouse strains developed hydrosalpinx; however, the extent of hydrosalpinx was more severe in TLR3-/- mice. Together, these data suggest that TLR3 promotes the clearance of Cm during early and mid-stages of genital tract infection, and that loss of TLR3 is detrimental in the development hydrosalpinx.