ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Replication competent lentivirus"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Transgenic sheep generated by lentiviral vectors: safety and integration analysis of surrogates and their offspring
    (Springer, 2013) Cornetta, Kenneth; Tessanne, Kimberly; Long, Charles; Yao, Jing; Satterfield, Carey; Westhusin, Mark; Medical and Molecular Genetics, School of Medicine
    The safety of HIV-1 based vectors was evaluated during the production of transgenic sheep. Vectors were introduced into the perivitelline space of in vivo derived one-cell sheep embryos by microinjection then transferred into the oviducts of recipient females. At 60-70 days of gestation, a portion of the recipients were euthanized and tissues collected from both surrogates and fetuses. Other ewes were allowed to carry lambs to term. Inadvertent transfer of vector from offspring to surrogates was evaluated in 330 blood and tissue samples collected from 57 ewes that served as embryo recipients. Excluding uterine contents, none of the samples tested positive for vector, indicating that that the vector did not cross the fetal maternal interface and infect surrogate ewes. Evaluating ewes, fetuses and lambs for replication competent lentivirus (RCL); 84 serum samples analyzed for HIV-1 capsid by ELISA and over 600 blood and tissue samples analyzed by quantitative PCR for the VSV-G envelopes revealed no evidence of RCL. Results of these experiments provide further evidence as to the safety of HIV-1 based vectors in animal and human applications.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University