- Browse by Subject
Browsing by Subject "Renin-Angiotensin System"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure(American Heart Association, 2016-04-15) Patel, Vaibhav B.; Zhong, Jiu-Chang; Grant, Maria B.; Oudit, Gavin Y.; Ophthalmology, School of MedicineHeart failure (HF) remains the most common cause of death and disability, and a major economic burden, in industrialized nations. Physiological, pharmacological, and clinical studies have demonstrated that activation of the renin-angiotensin system is a key mediator of HF progression. Angiotensin-converting enzyme 2 (ACE2), a homolog of ACE, is a monocarboxypeptidase that converts angiotensin II into angiotensin 1-7 (Ang 1-7) which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of angiotensin II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of ACE2/Ang 1-7 axis on the activated renin-angiotensin system that results in HF with preserved ejection fraction. Although loss of ACE2 enhances susceptibility to HF, increasing ACE2 level prevents and reverses the HF phenotype. ACE2 and Ang 1-7 have emerged as a key protective pathway against HF with reduced and preserved ejection fraction. Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects while lowering and increasing plasma angiotensin II and Ang 1-7 levels, respectively. This review discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the ACE2/Ang 1-7 axis in cardiac physiology and in the pathophysiology of HF. The pharmacological and therapeutic potential of enhancing ACE2/Ang 1-7 action as a novel therapy for HF is highlighted.Item SARS-CoV-2 Infections and ACE2: Clinical Outcomes Linked With Increased Morbidity and Mortality in Individuals With Diabetes(American Diabetes Association, 2020-07-15) Obukhov, Alexander G.; Stevens, Bruce R.; Prasad, Ram; Calzi, Sergio Li; Boulton, Michael E.; Raizada, Mohan K.; Oudit, Gavin Y.; Grant, Maria B.; Anatomy and Cell Biology, School of MedicineIndividuals with diabetes suffering from coronavirus disease 2019 (COVID-19) exhibit increased morbidity and mortality compared with individuals without diabetes. In this Perspective, we critically evaluate and argue that this is due to a dysregulated renin-angiotensin system (RAS). Previously, we have shown that loss of angiotensin-I converting enzyme 2 (ACE2) promotes the ACE/angiotensin-II (Ang-II)/angiotensin type 1 receptor (AT1R) axis, a deleterious arm of RAS, unleashing its detrimental effects in diabetes. As suggested by the recent reports regarding the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), upon entry into the host, this virus binds to the extracellular domain of ACE2 in nasal, lung, and gut epithelial cells through its spike glycoprotein subunit S1. We put forth the hypothesis that during this process, reduced ACE2 could result in clinical deterioration in COVID-19 patients with diabetes via aggravating Ang-II–dependent pathways and partly driving not only lung but also bone marrow and gastrointestinal pathology. In addition to systemic RAS, the pathophysiological response of the local RAS within the intestinal epithelium involves mechanisms distinct from that of RAS in the lung; however, both lung and gut are impacted by diabetes-induced bone marrow dysfunction. Careful targeting of the systemic and tissue RAS may optimize clinical outcomes in subjects with diabetes infected with SARS-CoV-2.Item Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism(Nature Publishing Group, 2015-10) Mehrotra, Purvi; Patel, Jaymin B.; Ivancic, Carlie M.; Collett, Jason A.; Basile, David P.; Department of Cellular & Integrative Physiology, IU School of MedicineExposure of rats to elevated dietary salt following recovery from acute kidney injury (AKI) accelerates the transition to chronic kidney disease (CKD), and is dependent on lymphocyte activity. Here we tested whether high salt diet triggers lymphocyte activation in postischemic kidneys to worsen renal inflammation and fibrosis. Male Sprague-Dawley rats on a 0.4% salt diet were subjected to left unilateral ischemia-reperfusion and allowed to recover for 5 weeks. This resulted in a mild elevation of CD4(+) T cells relative to sham animals. Contralateral unilateral nephrectomy and elevated dietary salt (4%) for 4 extra weeks hastened CKD and interstitial fibrosis. Activated T cells were increased in the kidney threefold after 4 weeks of elevated dietary salt exposure relative to post-AKI rats before salt feeding. The T cell subset was largely positive for IL-17, indicative of Th-17 cells. Because angiotensin II activity may influence lymphocyte activation, injured rats were given the AT1R antagonist, losartan, along with high salt diet. This significantly reduced the number of renal Th-17 cells to levels of sham rats, and significantly reduced the salt-induced increase in fibrosis to about half. In vitro studies in AKI-primed CD4(+) T cells indicated that angiotensin II and extracellular sodium enhanced, and losartan inhibited, IL-17 expression. Thus, dietary salt modulates immune cell activity in postischemic recovering kidneys because of the activity of local RAS, suggesting the participation of these cells in CKD progression post-AKI.