- Browse by Subject
Browsing by Subject "Renal ischemia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Inhibition of αvβ5 Integrin Attenuates Vascular Permeability and Protects against Renal Ischemia-Reperfusion Injury(American Society of Nephrology, 2017-06) McCurley, Amy; Alimperti, Stella; Campos-Bilderback, Silvia B.; Sandoval, Ruben M.; Calvino, Jenna E.; Reynolds, Taylor L.; Quigley, Catherine; Mugford, Joshua W.; Polacheck, William J.; Gomez, Ivan G.; Dovey, Jennifer; Marsh, Graham; Huang, Angela; Qian, Fang; Weinreb, Paul H.; Dolinski, Brian M.; Moore, Shaun; Duffield, Jeremy S.; Chen, Christopher S.; Molitoris, Bruce A.; Violette, Shelia M.; Crackower, Michael A.; Medicine, School of MedicineIschemia-reperfusion injury (IRI) is a leading cause of AKI. This common clinical complication lacks effective therapies and can lead to the development of CKD. The αvβ5 integrin may have an important role in acute injury, including septic shock and acute lung injury. To examine its function in AKI, we utilized a specific function-blocking antibody to inhibit αvβ5 in a rat model of renal IRI. Pretreatment with this anti-αvβ5 antibody significantly reduced serum creatinine levels, diminished renal damage detected by histopathologic evaluation, and decreased levels of injury biomarkers. Notably, therapeutic treatment with the αvβ5 antibody 8 hours after IRI also provided protection from injury. Global gene expression profiling of post-ischemic kidneys showed that αvβ5 inhibition affected established injury markers and induced pathway alterations previously shown to be protective. Intravital imaging of post-ischemic kidneys revealed reduced vascular leak with αvβ5 antibody treatment. Immunostaining for αvβ5 in the kidney detected evident expression in perivascular cells, with negligible expression in the endothelium. Studies in a three-dimensional microfluidics system identified a pericyte-dependent role for αvβ5 in modulating vascular leak. Additional studies showed αvβ5 functions in the adhesion and migration of kidney pericytes in vitro Initial studies monitoring renal blood flow after IRI did not find significant effects with αvβ5 inhibition; however, future studies should explore the contribution of vasomotor effects. These studies identify a role for αvβ5 in modulating injury-induced renal vascular leak, possibly through effects on pericyte adhesion and migration, and reveal αvβ5 inhibition as a promising therapeutic strategy for AKI.Item Integrin α 5 Is Regulated by miR-218-5p in Endothelial Progenitor Cells(Wolters Kluwer, 2022) Liu, Jialing; Li, Yi; Lyu, Lingna; Xiao, Liang; Memon, Aliza A.; Yu, Xin; Halim, Arvin; Patel, Shivani; Osman, Abdikheyre; Yin, Wenqing; Jiang, Jie; Naini, Said; Lim, Kenneth; Zhang, Aifeng; Williams, Jonathan D.; Koester, Ruth; Qi, Kevin Z.; Fucci, Quynh-Anh; Ding, Lai; Chang, Steven; Patel, Ankit; Mori, Yutaro; Chaudhari, Advika; Bao, Aaron; Liu, Jia; Lu, Tzong-Shi; Siedlecki, Andrew; Medicine, School of MedicineKidney endothelial cells are sensitive to hypoxic injury. This cell type expresses integrin α5 (ITGA5), which is essential to the Tie2 signaling cascade. The microRNA miR-218 is known to increase after hypoxia, but the microRNA’s role in regulating ITGA5 protein synthesis is unclear. In this study, the authors found that miR-218-5p specifically binds to ITGA5 mRNA in human kidney-derived endothelial progenitor cells (EPCs). In an animal model of ischemia/reperfusion injury, cells pretreated with an miR-218-5p mimic were delivered efficiently, whereas an animal model containing an miR-218-2 deletion specific to angioblasts resulted in kidney dysgenesis and impaired migration of mouse kidney-derived EPCs. Understanding the regulation of prominent signaling pathways in EPCs may inform optimization of therapeutic techniques for addressing kidney endothelial cell injury.