ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Renal hemodynamics"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bifurcation study of blood flow control in the kidney.
    (Elsevier, 2015-05) Ford Versypt, Ashlee N.; Makrides, Elizabeth; Arciero, Julia C.; Ellwein, Laura; Layton, Anita T.; Department of Mathematical Sciences, School of Science
    Renal blood flow is maintained within a narrow window by a set of intrinsic autoregulatory mechanisms. Here, a mathematical model of renal hemodynamics control in the rat kidney is used to understand the interactions between two major renal autoregulatory mechanisms: the myogenic response and tubuloglomerular feedback. A bifurcation analysis of the model equations is performed to assess the effects of the delay and sensitivity of the feedback system and the time constants governing the response of vessel diameter and smooth muscle tone. The results of the bifurcation analysis are verified using numerical simulations of the full nonlinear model. Both the analytical and numerical results predict the generation of limit cycle oscillations under certain physiologically relevant conditions, as observed in vivo.
  • Loading...
    Thumbnail Image
    Item
    Intravital Multiphoton Microscopy as a Tool for Studying Renal Physiology, Pathophysiology and Therapeutics
    (Frontiers Media, 2022-03-24) Molitoris, Bruce A.; Sandoval, Ruben M.; Wagner, Mark C.; Medicine, School of Medicine
    Intravital multiphoton microscopy has empowered investigators to study dynamic cell and subcellular processes in vivo within normal and disease organs. Advances in hardware, software, optics, transgenics and fluorescent probe design and development have enabled new quantitative approaches to create a disruptive technology pioneering advances in understanding of normal biology, disease pathophysiology and therapies. Offering superior spatial and temporal resolution with high sensitivity, investigators can follow multiple processes simultaneously and observe complex interactions between different cell types, intracellular organelles, proteins and track molecules for cellular uptake, intracellular trafficking, and metabolism in a cell specific fashion. The technique has been utilized in the kidney to quantify multiple dynamic processes including capillary flow, permeability, glomerular function, proximal tubule processes and determine the effects of diseases and therapeutic mechanisms. Limitations include the depth of tissue penetration with loss of sensitivity and resolution due to scattered emitted light. Tissue clearing technology has virtually eliminated penetration issues for fixed tissue studies. Use of multiphoton microscopy in preclinical animal models offers distinct advantages resulting in new insights into physiologic processes and the pathophysiology and treatment of diseases.
  • Loading...
    Thumbnail Image
    Item
    Low-Flow Acute Kidney Injury
    (Wolters Kluwer, 2022) Molitoris, Bruce A.; Medicine, School of Medicine
    AKI is a syndrome, not a disease. It results from many different primary and/or secondary etiologies and is often multifactorial, especially in the hospitalized patient. This review discusses the pathophysiology of three etiologies that cause AKI, those being kidney hypoperfusion, abdominal compartment syndrome, and urinary tract obstruction. The pathophysiology of these three causes of AKI differs but is overlapping. They all lead to a low urine flow rate and low urine sodium initially. In all three cases, with early recognition and correction of the underlying process, the resulting functional AKI can be rapidly reversed. However, with continued duration and/or increased severity, cell injury occurs within the kidney, resulting in structural AKI and a longer and more severe disease state with increased morbidity and mortality. This is why early recognition and reversal are critical.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University