- Browse by Subject
Browsing by Subject "Relaxation"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Comparing Brief Relaxation Period to Virtual Reality Period in Reducing Dental Anxiety Prior to Root Canal Treatment: A Randomized Control Trial(2023-06) Mintz, Caley Faith; Spolnik, Kenneth; Ehrlich, Ygal; Schrader, Stuart; Flowers, Leslie; Warner, NedIntroduction: Anxiety is a debilitating and difficult sensation many people face on a daily basis. Up to 20% of American adults experience dental anxiety2. Dental anxiety can present both psychologically and physiologically as a barrier to starting, completing and/or finishing dental treatment.2,4 Catastrophizing the procedure, which is common practice in anxious patients, will alter and increase the perception of pain66. Approaching and understanding dental anxiety has shown to produce more positive treatment outcomes and overall increased patient satisfaction2, 4, 6. Non-pharmacological approaches to reducing dental anxiety can be a quick, non-invasive, method to put patients at ease and can save chair time for both practitioner and patient, as well as a more pleasant experience for the patient. Objectives: The goal of this study is to investigate non-pharmacologic approaches to reducing dental anxiety prior to non-surgical root canal treatment. This will be done by comparing an Auditory Alone Brief Relaxation period (ABR) to a Relaxation Virtual Reality period (RVR). Materials and Methods: 60 subjects who need non-surgical root canal treatment was randomly allocated into 2 groups. One group received earphones to listen to a guided brief relaxation recording, focusing on breathing and a body scan. The other group received virtual reality goggles and choose a scene of their liking to experience. State Trait Anxiety Indicator (STAI), Visual Analog Scale (VAS), and vitals were measured to objectively determine baseline anxiety score followed by the same metrics after brief relaxation or virtual reality experience. A student will perform root canal treatment, and VAS and vitals were again be recorded at the end of the appointment. Results: Both RVR and ABR showed a statistically significant decrease in anxiety in STAI-S (p value <.001 for both), STAI-T (p value 0.025 ABR; <.001 RVR). VAS scores also significantly reduced from T1 to T2 to T3 time frame. Discussion: Our study investigated and compared two different interventions in reducing anxiety prior to endodontic therapy. The results showed that both ABR and RVR reduced anxiety prior to endodontic therapy and had an effect even after the endodontic therapy was completed. Additionally, when comparing the time points T1, T2, and T3, heart rate decreased throughout the procedure and more importantly, after the intervention (ABR or RVR) was delivered. Both anxiety scales, STAI and VAS showed a statistical significant decrease in anxiety throughout the appointment. Conclusion: Non-pharmacological techniques like guided meditation and virtual reality are a valid and unique approach to reducing anxiety prior to endodontic therapy. Both ABR and RVR interventions reduced the feelings of anxiety throughout the entire endodontic appointment. This study displays the ease of incorporating both interventions to reduce anxiety in an economical and noninvasive fashion.Item A rate insensitive linear viscoelastic model for soft tissues(Elsevier, 2007-08) Zhang, Wei; Chen, Henry Y.; Kassab, Ghassan S.; Department of Biomedical Engineering, School of Engineering and TechnologyIt is well known that many biological soft tissues behave as viscoelastic materials with hysteresis curves being nearly independent of strain rate when loading frequency is varied over a large range. In this work, the rate insensitive feature of biological materials is taken into account by a generalized Maxwell model. To minimize the number of model parameters, it is assumed that the characteristic frequencies of Maxwell elements form a geometric series. As a result, the model is characterized by five material constants: μ0, τ, m, ρ and β, where μ0 is the relaxed elastic modulus, τ the characteristic relaxation time, m the number of Maxwell elements, ρ the gap between characteristic frequencies, and β = μ1/μ0 with μ1 being the elastic modulus of the Maxwell body that has relaxation time τ. The physical basis of the model is motivated by the microstructural architecture of typical soft tissues. The novel model shows excellent fit of relaxation data on the canine aorta and captures the salient features of vascular viscoelasticity with significantly fewer model parameters.Item A rate-insensitive linear viscoelastic model for soft tissues(Elsevier, 2007-08) Zhang, Wei; Chen, Henry Y.; Kassab, Ghassan S.; Department of Biomedical Engineering, School of Engineering and TechnologyIt is well known that many biological soft tissues behave as viscoelastic materials with hysteresis curves being nearly independent of strain rate when loading frequency is varied over a large range. In this work, the rate-insensitive feature of biological materials is taken into account by a generalized Maxwell model. To minimize the number of model parameters, it is assumed that the characteristic frequencies of Maxwell elements form a geometric series. As a result, the model is characterized by five material constants: micro(0), tau, m, rho and beta, where micro(0) is the relaxed elastic modulus, tau the characteristic relaxation time, m the number of Maxwell elements, rho the gap between characteristic frequencies, and beta=micro(1)/micro(0) with micro(1) being the elastic modulus of the Maxwell body that has relaxation time tau. The physical basis of the model is motivated by the microstructural architecture of typical soft tissues. The novel model shows excellent fit of relaxation data on the canine aorta and captures the salient features of vascular viscoelasticity with significantly fewer model parameters.Item Skeletal muscle contraction kinetics and AMPK responses are modulated by the adenine nucleotide degrading enzyme AMPD1(American Physiological Society, 2022) Hafen, Paul S.; Law, Andrew S.; Matias, Catalina; Miller, Spencer G.; Brault, Jeffrey J.; Anatomy, Cell Biology and Physiology, School of MedicineAMP deaminase 1 (AMPD1; AMP → IMP + NH3) deficiency in skeletal muscle results in an inordinate accumulation of AMP during strenuous exercise, with some but not all studies reporting premature fatigue and reduced work capacity. To further explore these inconsistencies, we investigated the extent to which AMPD1 deficiency impacts skeletal muscle contractile function of different muscles and the [AMP]/AMPK responses to different intensities of fatiguing contractions. To reduce AMPD1 protein, we electroporated either an inhibitory AMPD1-specific miRNA encoding plasmid or a control plasmid, into contralateral EDL and SOL muscles of C57BL/6J mice (n = 48 males, 24 females). After 10 days, isolated muscles were assessed for isometric twitch, tetanic, and repeated fatiguing contraction characteristics using one of four (None, LOW, MOD, and HIGH) duty cycles. AMPD1 knockdown (∼35%) had no effect on twitch force or twitch contraction/relaxation kinetics. However, during maximal tetanic contractions, AMPD1 knockdown impaired both time-to-peak tension (TPT) and half-relaxation time (½ RT) in EDL, but not SOL muscle. In addition, AMPD1 knockdown in EDL exaggerated the AMP response to contractions at LOW (+100%) and MOD (+54%) duty cycles, but not at HIGH duty cycle. This accumulation of AMP was accompanied by increased AMPK phosphorylation (Thr-172; LOW +25%, MOD +34%) and downstream substrate phosphorylation (LOW +15%, MOD +17%). These responses to AMPD1 knockdown were not different between males and females. Our findings demonstrate that AMPD1 plays a role in maintaining skeletal muscle contractile function and regulating the energetic responses associated with repeated contractions in a muscle- but not sex-specific manner. NEW & NOTEWORTHY: AMP deaminase 1 (AMPD1) deficiency has been associated with premature muscle fatigue and reduced work capacity, but this finding has been inconsistent. Herein, we report that although AMPD1 knockdown in mouse skeletal muscle does not change maximal isometric force, it negatively impacts muscle function by slowing contraction and relaxation kinetics in EDL muscle but not SOL muscle. Furthermore, AMPD1 knockdown differentially affects the [AMP]/AMPK responses to fatiguing contractions in an intensity-dependent manner in EDL muscle.