- Browse by Subject
Browsing by Subject "Regularization"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Efficient Intelligence Towards Real-Time Precision Medicine With Systematic Pruning and Quantization(2024-08) Karunakaran, Maneesh; Zhang, Qingxue; King, Brian; Maher, Rizkalla E.The widespread adoption of Convolutional Neural Networks (CNNs) in real-world applications, particularly on resource-constrained devices, is hindered by their computational complexity and memory requirements. This research investigates the application of pruning and quantization techniques to optimize CNNs for arrhythmia classification using the MIT-BIH Arrhythmia Database. By combining magnitude-based pruning, regularization-based pruning, filter map-based pruning, and quantization at different bit-widths (4-bit, 8-bit, 2-bit, and 1-bit), the study aims to develop a more compact and efficient CNN model while maintaining high accuracy. The experimental results demonstrate that these techniques effectively reduce model size, improve inference speed, and maintain accuracy, adapting them for use on devices with limited resources. The findings highlight the potential of these optimization techniques for real-time applications in mobile health monitoring and edge computing, paving the way for broader adoption of deep learning in resource-limited environments.Item Efficient IoT Big Data Streaming With Deep-Learning-Enabled Dynamics(IEEE, 2022-11-11) Wong, Junhua; Piuri, Vincenzo; Scotti, Fabio; Zhang, Qingxue; Electrical and Computer Engineering, School of Engineering and TechnologyInternet of Medical Things (IoMT) is igniting many emerging smart health applications, by continuously streaming the big data for data-driven innovations. One critical obstacle in IoMT big data is the power hungriness of long-term data transmission. Targeting this challenge, we propose a novel framework called, IoMT big-data Bayesian-backward deep-encoder learning (IBBD), which mines deep autoencoder (AE) configurations for data sparsification and determines optimal tradeoffs between information loss and power overhead. More specifically, the IBBD framework leverages an additional external Bayesian-backward loop that recommends AE configurations, on top of a traditional deep learning loop that executes and evaluate the AE quality. The IBBD recommendation is based on confidence to further minimize the regularized metrics that quantify the quality of AE configurations, and it further leverages regularization techniques to allow adjusting error–power tradeoffs in the mining process. We have conducted thorough experiments on a cardiac data streaming application and demonstrated the superiority of IBBD over the common practices such as discrete wavelet transform, and we have further generalized IBBD through validating the optimal AE configurations determined on one user to other users. This study is expected to greatly advance IoMT big data streaming practices toward precision medicine.Item Multimodal neuroimaging data integration and pathway analysis(Wiley, 2021) Zhao, Yi; Li, Lexin; Caffo, Brian S.; Biostatistics, School of Public HealthWith advancements in technology, the collection of multiple types of measurements on a common set of subjects is becoming routine in science. Some notable examples include multimodal neuroimaging studies for the simultaneous investigation of brain structure and function and multi-omics studies for combining genetic and genomic information. Integrative analysis of multimodal data allows scientists to interrogate new mechanistic questions. However, the data collection and generation of integrative hypotheses is outpacing available methodology for joint analysis of multimodal measurements. In this article, we study high-dimensional multimodal data integration in the context of mediation analysis. We aim to understand the roles that different data modalities play as possible mediators in the pathway between an exposure variable and an outcome. We propose a mediation model framework with two data types serving as separate sets of mediators and develop a penalized optimization approach for parameter estimation. We study both the theoretical properties of the estimator through an asymptotic analysis and its finite-sample performance through simulations. We illustrate our method with a multimodal brain pathway analysis having both structural and functional connectivity as mediators in the association between sex and language processing.Item Tangent space functional reconfigurations in individuals at risk for alcohol use disorder(ArXiv, 2024-05-24) Moghaddam, Mahdi; Dzemidzic, Mario; Guerrero, Daniel; Liu, Mintao; Alessi, Jonathan; Plawecki, Martin H.; Harezlak, Jaroslaw; Kareken, David; Goñi, Joaquín; Neurology, School of MedicineHuman brain function dynamically adjusts to ever-changing stimuli from the external environment. Studies characterizing brain functional reconfiguration are nevertheless scarce. Here we present a principled mathematical framework to quantify brain functional reconfiguration when engaging and disengaging from a stop signal task (SST). We apply tangent space projection (a Riemannian geometry mapping technique) to transform functional connectomes (FCs) and quantify functional reconfiguration using the correlation distance of the resulting tangent-FCs. Our goal was to compare functional reconfigurations in individuals at risk for alcohol use disorder (AUD). We hypothesized that functional reconfigurations when transitioning in/from a task would be influenced by family history of alcohol use disorder (FHA) and other AUD risk factors. Multilinear regression model results showed that engaging and disengaging functional reconfiguration were driven by different AUD risk factors. Functional reconfiguration when engaging in the SST was negatively associated with recent drinking. When disengaging from the SST, however, functional reconfiguration was negatively associated with FHA. In both models, several other factors contributed to the explanation of functional reconfiguration. This study demonstrates that tangent-FCs can characterize task-induced functional reconfiguration, and that it is related to AUD risk.