- Browse by Subject
Browsing by Subject "Regorafenib"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chronic Treatment with Multi-Kinase Inhibitors Causes Differential Toxicities on Skeletal and Cardiac Muscles(MDPI, 2019-04-23) Huot, Joshua R.; Essex, Alyson L.; Gutierrez, Maya; Barreto, Rafael; Wang, Meijing; Waning, David L.; Plotkin, Lilian I.; Bonetto, Andrea; Surgery, School of MedicineDespite recent progress, chemotherapy remains the preferred treatment for cancer. We have shown a link between anticancer drugs and the development of cachexia, i.e., body wasting accompanied by muscle loss. The multi-kinase inhibitors (MKIs) regorafenib and sorafenib, used as second-line treatment for solid tumors, are frequently accompanied by several side effects, including loss of muscle mass and strength. In the present study we aimed to investigate the molecular mechanisms associated with the occurrence of muscle toxicities in in vivo conditions. Hence, we treated 8-week old healthy CD2F1 male mice with MKIs for up to six weeks and observed decreased skeletal and cardiac muscle mass, consistent with muscle weakness. Modulation of ERK1/2 and GSK3β, as well as increased expression of markers of autophagy, previously associated with muscle atrophy conditions, were shown in skeletal muscle upon treatment with either drug. MKIs also promoted cardiac abnormalities consistent with reduced left ventricular mass, internal diameter, posterior wall thickness and stroke volume, despite unchanged overall function. Notably, different signaling pathways were affected in the heart, including reduced expression of mitochondrial proteins, and elevated AKT, GSK3β, mTOR, MEK1/2 and ERK1/2 phosphorylation. Combined, our data demonstrate detrimental effects on skeletal and cardiac muscle in association with chronic administration of MKIs, although different mechanisms would seem to contribute to the cachectic phenotype in the two tissues.Item Locoregional and systemic therapy for hepatocellular carcinoma(AME, 2017-04) Gbolahan, Olumide B.; Beckley, Eric W.; LaRoche, Thomas P.; O’Neil, Bert H.; Pyko, Maximilian; Schacht, Michael A.; Radiation Oncology, School of MedicineThe management of hepatocellular carcinoma (HCC) remains challenging due to late presentation and the presence of accompanying liver dysfunction. As such, most patients are not eligible for curative resection and liver transplant. Management in this scenario depends on a number of factors including hepatic function, tumor burden, patency of hepatic vasculature and patients' functional status. Based on these, patients can be offered catheter based intra-arterial therapy for intermediate stage disease and in more advanced disease, sorafenib. Given recent data, regorafenib is now an option following failure of sorafenib. Catheter directed intra-arterial therapy takes advantage of tumor hypervascularity and the unique dual blood supply of the liver, as hepatic tumors receive arterial perfusion via the hepatic artery while the rest of the liver is supplied by the portal vein. This allows selective embolization and delivery of chemotherapeutic agents to the tumor. Compared to best supportive care, intra-arterial therapy offers a survival benefit in intermediate stage HCC and is the recommended approach for treatment. None of the catheter based approaches; including bland embolization, conventional trans-arterial chemoembolization (cTACE), drug eluting bead trans-arterial chemoembolization (DEB-TACE) or trans-arterial radioembolization (TARE) offers a clear advantage over the other, although DEB-TACE may be characterized by less systemic toxicity. All of these approaches are contraindicated in patients with portal vein thrombosis (PVT). On the other hand, intra-arterial, radio embolization, with Yttrium-90 (Y90) can be offered to patients with PVT. The place of this modality in management of HCC is still being investigated. The role of sorafenib in advanced HCC is not in doubt, as until recently, it was the only systemic therapy approved for the management in this setting. This is despite multiple trials evaluating other agents. The addition of sorafenib to catheter-based therapy in intermediate stage disease has also failed to show any benefit. The modest survival benefit with sorafenib and the failure of other targeted agents suggest that it is important to look beyond inhibition of angiogenesis in advanced HCC. Identification of key drivers and mediators of HCC remains paramount for successful drug development. In line with this, it is refreshing that the excitement that has followed developments in cancer immunotherapy is finding its way to HCC with early trials of anti-PD1 monoclonal antibodies showing sufficient activity that phase III trials are now ongoing for Pembrolizumab and Nivolumab in advanced HCC. Future drug development efforts will focus on defining the feasibility of combining different treatment approaches targeting multiple important modulators of HCC.