- Browse by Subject
Browsing by Subject "RNAseq"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Acquisition, processing, and single-cell analysis of normal human breast tissues from a biobank(Cell Press, 2021-12-16) Bhat-Nakshatri, Poornima; Marino, Natascia; Gao, Hongyu; Liu, Yunlong; Storniolo, Anna Maria; Nakshatri, Harikrishna; Surgery, School of MedicineThe Komen Tissue Bank is the only biorepository in the world for normal breast tissues from women. Below we report the acquisition and processing of breast tissue from volunteer donors and describe an experimental and analysis pipeline to generate a single-cell atlas. This atlas is based on single-cell RNA-seq and is useful to derive breast epithelial cell subcluster-specific gene expression signatures, which can be applied to breast cancer gene expression data to identify putative cell-of-origin. For complete details on the use and execution of this protocol, please refer to Bhat-Nakshatri et al. (2021).Item Global targetome analysis reveals critical role of miR-29a in pancreatic stellate cell mediated regulation of PDAC tumor microenvironment(BMC, 2020-07-13) Dey, Shatovisha; Liu, Sheng; Factora, Tricia D.; Taleb, Solaema; Riverahernandez, Primavera; Udari, Lata; Zhong, Xiaoling; Wan, Jun; Kota, Janaiah; Medical and Molecular Genetics, School of MedicineBackground Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive forms of malignancies with a nearly equal incidence and mortality rates in patients. Pancreatic stellate cells (PSCs) are critical players in PDAC microenvironment to promote the aggressiveness and pathogenesis of the disease. Dysregulation of microRNAs (miRNAs) have been shown to play a significant role in progression of PDAC. Earlier, we observed a PSC-specific downregulation of miR-29a in PDAC pancreas, however, the mechanism of action of the molecule in PSCs is still to be elucidated. The current study aims to clarify the regulation of miR-29a in PSCs and identifies functionally important downstream targets that contribute to tumorigenic activities during PDAC progression. Methods In this study, using RNAseq approach, we performed transcriptome analysis of paired miR-29a overexpressing and control human PSCs (hPSCs). Enrichment analysis was performed with the identified differentially expressed genes (DEGs). miR-29a targets in the dataset were identified, which were utilized to create network interactions. Western blots were performed with the top miR-29a candidate targets in hPSCs transfected with miR-29a mimic or scramble control. Results RNAseq analysis identified 202 differentially expressed genes, which included 19 downregulated direct miR-29a targets. Translational repression of eight key pro-tumorigenic and -fibrotic targets namely IGF-1, COL5A3, CLDN1, E2F7, MYBL2, ITGA6 and ADAMTS2 by miR-29a was observed in PSCs. Using pathway analysis, we find that miR-29a modulates effectors of IGF-1-p53 signaling in PSCs that may hinder carcinogenesis. We further observe a regulatory role of the molecule in pathways associated with PDAC ECM remodeling and tumor-stromal crosstalk, such as INS/IGF-1, RAS/MAPK, laminin interactions and collagen biosynthesis. Conclusions Together, our study presents a comprehensive understanding of miR-29a regulation of PSCs, and identifies essential pathways associated with PSC-mediated PDAC pathogenesis. The findings suggest an anti-tumorigenic role of miR-29a in the context of PSC-cancer cell crosstalk and advocates for the potential of the molecule in PDAC targeted therapies.Item Interleukin-27 Gene Delivery Targeting IL-6R -Expressing Cells as a Stress Response Therapy(MDPI, 2020-02) Neto, Manoel Figueiredo; Liu, Shengzhi; Wes Salameh, Janelle; Yokota, Hiroki; Figueiredo, Marxa Leão; Biomedical Engineering, School of Engineering and TechnologyInterleukin-27 (IL-27) has shown promise in halting tumor growth and mediating tumor regression in several models, including prostate cancer. We describe our findings on the effects of IL-27 on the gene expression changes of TC2R prostate adenocarcinoma cells. We utilized RNAseq to assess profile differences between empty vector control, vector delivering IL-27 modified at its C-terminus with a non-specific peptide, and IL-27 modified at the C-terminus with a peptide targeting the IL-6-Rα. The targeted IL-27 had higher bioactivity and activity in vivo in a recent study by our group, but the mechanisms underlying this effect had not been characterized in detail at the gene expression level on tumor cells. In the present work, we sought to examine potential mechanisms for targeted IL-27 enhanced activity directly on tumor cells. The targeted IL-27 appeared to modulate several changes that would be consistent with an anti-tumor effect, including upregulation in the Interferon (IFN) and Interferon regulatory factor (IRF), oxidative phosphorylation, Janus kinase/Signal transducers and activators of transcription (JAK/STAT), and eukaryotic initiation factor 2 (EIF2) signaling. Of these signaling changes predicted by ingenuity pathway analyses (IPA), the novel form also with the highest significance (-log(Benjamini-Hochberg (B-H)) p-value) was the EIF2 signaling upregulation. We validated this predicted change by assaying for eukaryotic initiation factor 2 alpha (eIF2α), or phosphorylated eIF2α (p-eIF2α), and caspase-3 levels. We detected an increase in the phosphorylated form of eIF2α and in the cleaved caspase-3 fraction, indicating that the EIF2 signaling pathway was upregulated in these prostate tumor cells following targeted IL-27 gene delivery. This approach of targeting cytokines to enhance their activity against cancer cells is a novel approach to help augment IL-27's bioactivity and efficacy against prostate tumors and could be extended to other conditions where it could help interfere with the EIF2α pathway and promote caspase-3 activation.Item Profiling of Adipose and Skeletal Muscle in Human Pancreatic Cancer Cachexia Reveals Distinct Gene Profiles with Convergent Pathways(MDPI, 2021-04-20) Narasimhan, Ashok; Zhong, Xiaoling; Au, Ernie P.; Ceppa, Eugene P.; Nakeeb, Atilla; House, Michael G.; Zyromski, Nicholas J.; Schmidt, C. Max; Schloss, Katheryn N. H.; Schloss, Daniel E. I.; Liu, Yunlong; Jiang, Guanglong; Hancock, Bradley A.; Radovich, Milan; Kays, Joshua K.; Shahda, Safi; Couch, Marion E.; Koniaris, Leonidas G.; Zimmers, Teresa A.; Surgery, School of MedicineThe vast majority of patients with pancreatic ductal adenocarcinoma (PDAC) suffer cachexia. Although cachexia results from concurrent loss of adipose and muscle tissue, most studies focus on muscle alone. Emerging data demonstrate the prognostic value of fat loss in cachexia. Here we sought to identify the muscle and adipose gene profiles and pathways regulated in cachexia. Matched rectus abdominis muscle and subcutaneous adipose tissue were obtained at surgery from patients with benign conditions (n = 11) and patients with PDAC (n = 24). Self-reported weight loss and body composition measurements defined cachexia status. Gene profiling was done using ion proton sequencing. Results were queried against external datasets for validation. 961 DE genes were identified from muscle and 2000 from adipose tissue, demonstrating greater response of adipose than muscle. In addition to known cachexia genes such as FOXO1, novel genes from muscle, including PPP1R8 and AEN correlated with cancer weight loss. All the adipose correlated genes including SCGN and EDR17 are novel for PDAC cachexia. Pathway analysis demonstrated shared pathways but largely non-overlapping genes in both tissues. Age related muscle loss predominantly had a distinct gene profiles compared to cachexia. This analysis of matched, externally validate gene expression points to novel targets in cachexia.Item Transcriptomic profiles in pulmonary arterial hypertension associate with disease severity and identify novel candidate genes(Sage, 2020-12-07) Romanoski, Casey E.; Qi, Xinshuai; Sangam, Shreya; Vanderpool, Rebecca R.; Stearman, Robert S.; Conklin, Austin; Gonzalez-Garay, Manuel; Rischard, Franz; Ayon, Ramon J.; Wang, Jian; Simonson, Tatum; Babicheva, Aleksandra; Shi, Yinan; Tang, Haiyang; Makino, Ayako; Kanthi, Yogendra; Geraci, Mark W.; Garcia, Joe G.N.; Yuan, Jason X.-J.; Desai, Ankit A.; Medicine, School of MedicineUsing RNAseq, we identified a 61 gene-based circulating transcriptomic profile most correlated with four indices of pulmonary arterial hypertension severity. In an independent dataset, 13/61 (21%) genes were differentially expressed in lung tissues of pulmonary arterial hypertension cases versus controls, highlighting potentially novel candidate genes involved in pulmonary arterial hypertension development.