- Browse by Subject
Browsing by Subject "RNAPII"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Ssu72 and Rtr1 Serine 5 Phosphates and Their Role in NNS and CPF Transcription Termination(2020-05) Victorino, Jose Fabian; Mosley, Amber; Roach, Peter; Georgiadis, Millie; Liu, Yunlong; Arrizabalaga, GustavoPolyadenylation dependent transcription termination is dependent on the Cleavage and Polyadenylation Factor complex (CPF) which is essential for the termination and processing of mature RNA. Polyadenylation (PolyA) independent transcription termination is carried out by the NNS (Nrd1-Nab3-Sen1) termination pathway, which helps regulate termination and processing of non-coding RNA (ncRNA). The disruption of these pathways can impact expression of nearby genes, both protein coding and noncoding. Recruitment of termination pathway components is achieved through a domain unique to the largest subunit of RNA Polymerase II (RNAPII) referred to as the Cterminal domain (CTD), which contains a repeating heptad sequence, Y1S2P3T4S5P6S7, and acts as a docking site for transcription regulatory proteins. Ssu72 is a serine 5 phosphatase and an essential member of the CPF complex. Rtr1 is also a serine 5 phosphatase, but its mechanism of action is less well characterized. Both Rtr1 and Ssu72 regulate transcription machinery recruitment through control of the phosphorylation status of the CTD. My studies have focused on Rtr1 and Ssu72 mutants in yeast which show evidence of transcription termination related phenotypes. Chromatin immunoprecipitation of RNAPII followed by exonuclease treatment (ChIP-exo) studies provide evidence of RNAPII transcription continuing through termination sites at ncRNA genes as a result of a hyperactive Ssu72-L84F mutant, while an RTR1 knockout results in increased premature RNAPII transcription termination. Northern blots and RNA sequencing confirm premature transcription termination and decreased total RNA expression in the RTR1 knockout and increased length of ncRNA transcripts as well as total RNA expression in the Ssu72-L84F mutant. Mass spectrometry analysis has identified changes in the protein-protein interactions (PPI) within the CPF complex in the Ssu72-L84F mutant and decreased PPIs between different transcription machinery in RTR1 knockout cells. My results show that the CTD phosphatases Rtr1 and Ssu72 play unique roles in the regulation of RNAPII termination in eukaryotes.Item Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control(Wiley, 2019-07) Peck, Sarah A.; Hughes, Katlyn D.; Victorino, Jose F.; Mosley, Amber L.; Biochemistry and Molecular Biology, School of MedicineProcessing and maturation of precursor RNA species is coupled to RNA polymerase II transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, splicing, and 3' end processing of different RNA species to help ensure quality control of the transcriptome. Many improperly processed transcripts are not exported from the nucleus, are restricted to the site of transcription, and are in some cases degraded, which helps to limit any possibility of aberrant RNA causing harm to cellular health. These critical quality control pathways are regulated by the highly dynamic protein-protein interaction network at the site of transcription. Recent work has further revealed the extent to which the processes of transcription and RNA processing and quality control are integrated, and how critically their coupling relies upon the dynamic protein interactions that take place co-transcriptionally. This review focuses specifically on the intricate balance between 3' end processing and RNA decay during transcription termination. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Capping and 5' End Modifications.