- Browse by Subject
Browsing by Subject "Quantum mechanics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Investigation of PT Symmetry Breaking and Exceptional Points in Delay-coupled Semiconductor Lasers(2021-08) Wilkey, Andrew; Vemuri, Gautam; Joglekar, Yogesh; Liu, Jing; Ou, Jeff; Petrache, HoriaThis research investigates characteristics of PT (parity-time) symmetry breaking in a system of two optically-coupled, time-delayed semiconductor lasers. A theoretical rate equation model for the lasers' electric fields is presented and then reduced to a 2x2 Hamiltonian model, which, in the absence of time-delay, is PT-symmetric. The important parameters we control are the temporal separation of the lasers, the frequency detuning, and the coupling strength. The detuning is experimentally controlled by varying the lasers' temperatures, and intensity vs. detuning behavior are examined, specifically how the PT-transition and the period and amplitude of sideband intensity oscillations change with coupling and delay. Experiments are compared to analytic predictions and numerical results, and all are found to be in good agreement. Eigenvalues, eigenvectors, and exceptional points of the reduced Hamiltonian model are numerically and analytically investigated, specifically how nonzero delay affects existing exceptional points.Item PT-symmetry from Lindblad dynamics in a linearized optomechanical system(Nature Research, 2020-02-04) Ávila, B. Jaramillo; Ventura-Velázquez, C.; León-Montiel, R. de J.; Joglekar, Yogesh N.; Rodríguez-Lara, B. M.; Physics, School of ScienceWe analyze a lossy linearized optomechanical system in the red-detuned regime under the rotating wave approximation. This so-called optomechanical state transfer protocol provides effective lossy frequency converter (quantum beam-splitter-like) dynamics where the strength of the coupling between the electromagnetic and mechanical modes is controlled by the optical steady-state amplitude. By restricting to a subspace with no losses, we argue that the transition from mode-hybridization in the strong coupling regime to the damped-dynamics in the weak coupling regime, is a signature of the passive parity-time (PT) symmetry breaking transition in the underlying non-Hermitian quantum dimer. We compare the dynamics generated by the quantum open system (Langevin or Lindblad) approach to that of the PT-symmetric Hamiltonian, to characterize the cases where the two are identical. Additionally, we numerically explore the evolution of separable and correlated number states at zero temperature as well as thermal initial state evolution at room temperature. Our results provide a pathway for realizing non-Hermitian Hamiltonians in optomechanical systems at a quantum level.