- Browse by Subject
Browsing by Subject "PyTorch"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item AI on the Edge with CondenseNeXt: An Efficient Deep Neural Network for Devices with Constrained Computational Resources(2021-08) Kalgaonkar, Priyank B.; El-Sharkawy, Mohamed A.; King, Brian S.; Rizkalla, Maher E.Research work presented within this thesis propose a neoteric variant of deep convolutional neural network architecture, CondenseNeXt, designed specifically for ARM-based embedded computing platforms with constrained computational resources. CondenseNeXt is an improved version of CondenseNet, the baseline architecture whose roots can be traced back to ResNet. CondeseNeXt replaces group convolutions in CondenseNet with depthwise separable convolutions and introduces group-wise pruning, a model compression technique, to prune (remove) redundant and insignificant elements that either are irrelevant or do not affect performance of the network upon disposition. Cardinality, a new dimension to the existing spatial dimensions, and class-balanced focal loss function, a weighting factor inversely proportional to the number of samples, has been incorporated in order to relieve the harsh effects of pruning, into the design of CondenseNeXt’s algorithm. Furthermore, extensive analyses of this novel CNN architecture was performed on three benchmarking image datasets: CIFAR-10, CIFAR-100 and ImageNet by deploying the trained weight on to an ARM-based embedded computing platform: NXP BlueBox 2.0, for real-time image classification. The outputs are observed in real-time in RTMaps Remote Studio’s console to verify the correctness of classes being predicted. CondenseNeXt achieves state-of-the-art image classification performance on three benchmark datasets including CIFAR-10 (4.79% top-1 error), CIFAR-100 (21.98% top-1 error) and ImageNet (7.91% single model, single crop top-5 error), and up to 59.98% reduction in forward FLOPs compared to CondenseNet. CondenseNeXt can also achieve a final trained model size of 2.9 MB, however at the cost of 2.26% in accuracy loss. Thus, performing image classification on ARM-Based computing platforms without requiring a CUDA enabled GPU support, with outstanding efficiency.Item NextDet: Efficient Sparse-to-Dense Object Detection with Attentive Feature Aggregation(MDPI, 2022-11-28) Kalgaonkar, Priyank; El-Sharkawy, Mohamed; Electrical and Computer Engineering, School of Engineering and TechnologyObject detection is a computer vision task of detecting instances of objects of a certain class, identifying types of objects, determining its location, and accurately labelling them in an input image or a video. The scope of the work presented within this paper proposes a modern object detection network called NextDet to efficiently detect objects of multiple classes which utilizes CondenseNeXt, an award-winning lightweight image classification convolutional neural network algorithm with reduced number of FLOPs and parameters as the backbone, to efficiently extract and aggregate image features at different granularities in addition to other novel and modified strategies such as attentive feature aggregation in the head, to perform object detection and draw bounding boxes around the detected objects. Extensive experiments and ablation tests, as outlined in this paper, are performed on Argoverse-HD and COCO datasets, which provide numerous temporarily sparse to dense annotated images, demonstrate that the proposed object detection algorithm with CondenseNeXt as the backbone result in an increase in mean Average Precision (mAP) performance and interpretability on Argoverse-HD’s monocular ego-vehicle camera captured scenarios by up to 17.39% as well as COCO’s large set of images of everyday scenes of real-world common objects by up to 14.62%.Item Object Detection Using Vision Transformed EfficientDet(2023-08) Kar, Shreyanil; El-Sharkawy, Mohamed A.; King, Brian S.; Rizkalla, Maher E.This research presents a novel approach for object detection by integrating Vision Transformers (ViT) into the EfficientDet architecture. The field of computer vision, encompassing artificial intelligence, focuses on the interpretation and analysis of visual data. Recent advancements in deep learning, particularly convolutional neural networks (CNNs), have significantly improved the accuracy and efficiency of computer vision systems. Object detection, a widely studied application within computer vision, involves the identification and localization of objects in images. The ViT backbone, renowned for its success in image classification and natural language processing tasks, employs self-attention mechanisms to capture global dependencies in input images. However, ViT’s capability to capture fine-grained details and context information is limited. To address this limitation, the integration of ViT into the EfficientDet architecture is proposed. EfficientDet is recognized for its efficiency and accuracy in object detection. By combining the strengths of ViT and EfficientDet, the proposed integration enhances the network’s ability to capture fine-grained details and context information. It leverages ViT’s global dependency modeling alongside EfficientDet’s efficient object detection framework, resulting in highly accurate and efficient performance. Noteworthy object detection frameworks utilized in the industry, such as RetinaNet, EfficientNet, and EfficientDet, primarily employ convolution. Experimental evaluations were conducted using the PASCAL VOC 2007 and 2012 datasets, widely acknowledged benchmarks for object detection. The integrated ViT-EfficientDet model achieved an impressive mean Average Precision (mAP) score of 86.27% when tested on the PASCAL VOC 2007 dataset, demonstrating its superior accuracy. These results underscore the potential of the proposed integration for real-world applications. In conclusion, the research introduces a novel integration of Vision Transformers into the EfficientDet architecture, yielding significant improvements in object detection performance. By combining ViT’s ability to capture global dependencies with EfficientDet’s efficiency and accuracy, the proposed approach offers enhanced object detection capabilities. Future research directions may explore additional datasets and evaluate the performance of the proposed framework across various computer vision tasks.Item Real-Time Embedded Implementation of Improved Object Detector for Resource-Constrained Devices(MDPI, 2022-04-13) Ravi, Niranjan; El-Sharkawy, Mohamed; Electrical and Computer Engineering, School of Engineering and TechnologyArtificial intelligence (A.I.) has revolutionised a wide range of human activities, including the accelerated development of autonomous vehicles. Self-navigating delivery robots are recent trends in A.I. applications such as multitarget object detection, image classification, and segmentation to tackle sociotechnical challenges, including the development of autonomous driving vehicles, surveillance systems, intelligent transportation, and smart traffic monitoring systems. In recent years, object detection and its deployment on embedded edge devices have seen a rise in interest compared to other perception tasks. Embedded edge devices have limited computing power, which impedes the deployment of efficient detection algorithms in resource-constrained environments. To improve on-board computational latency, edge devices often sacrifice performance, creating the need for highly efficient A.I. models. This research examines existing loss metrics and their weaknesses, and proposes an improved loss metric that can address the bounding box regression problem. Enhanced metrics were implemented in an ultraefficient YOLOv5 network and tested on the targeted datasets. The latest version of the PyTorch framework was incorporated in model development. The model was further deployed using the ROS 2 framework running on NVIDIA Jetson Xavier NX, an embedded development platform, to conduct the experiment in real time.