- Browse by Subject
Browsing by Subject "Pulmonary vascular disease"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Analysis of MicroRNA Cargo in Circulating Extracellular Vesicles from HIV-Infected Individuals with Pulmonary Hypertension(MDPI, 2024-05-21) Mahajan, Aatish; Gunewardena, Sumedha; Morris, Alison; Clauss, Matthias; Dhillon, Navneet K.; Medicine, School of MedicineThe risk of developing pulmonary hypertension (PH) in people living with HIV is at least 300-fold higher than in the general population, and illicit drug use further potentiates the development of HIV-associated PH. The relevance of extracellular vesicles (EVs) containing both coding as well as non-coding RNAs in PH secondary to HIV infection and drug abuse is yet to be explored. We here compared the miRNA cargo of plasma-derived EVs from HIV-infected stimulant users with (HIV + Stimulants + PH) and without PH (HIV + Stimulants) using small RNA sequencing. The data were compared with 12 PH datasets available in the GEO database to identify potential candidate gene targets for differentially altered miRNAs using the following functional analysis tools: ingenuity pathway analysis (IPA), over-representation analysis (ORA), and gene set enrichment analysis (GSEA). MiRNAs involved in promoting cell proliferation and inhibition of intrinsic apoptotic signaling pathways were among the top upregulated miRNAs identified in EVs from the HIV + Stimulants + PH group compared to the HIV + Stimulants group. Alternatively, the downregulated miRNAs in the HIV + Stimulants + PH group suggested an association with the negative regulation of smooth muscle cell proliferation, IL-2 mediated signaling, and transmembrane receptor protein tyrosine kinase signaling pathways. The validation of significantly differentially expressed miRNAs in an independent set of HIV-infected (cocaine users and nondrug users) with and without PH confirmed the upregulation of miR-32-5p, 92-b-3p, and 301a-3p positively regulating cellular proliferation and downregulation of miR-5571, -4670 negatively regulating smooth muscle proliferation in EVs from HIV-PH patients. This increase in miR-301a-3p and decrease in miR-4670 were negatively correlated with the CD4 count and FEV1/FVC ratio, and positively correlated with viral load. Collectively, this data suggest the association of alterations in the miRNA cargo of circulating EVs with HIV-PH.Item Assessing the cancer hypothesis of pulmonary arterial hypertension: the devil is in the detail(American Physiological Society, 2020-06-01) Frump, Andrea L.; Lai, Yen-Chun; Lahm, Tim; Anatomy and Cell Biology, School of MedicineItem At a crossroads: COVID-19 recovery and the risk of pulmonary vascular disease(Wolters Kluwer, 2021) Cascino, Thomas M.; Desai, Ankit A.; Kanthi, Yogendra; Medicine, School of MedicinePurpose of review: The coronavirus disease 2019 (COVID-19) pandemic has led to almost 3,000,000 deaths across 139 million people infected worldwide. Involvement of the pulmonary vasculature is considered a major driving force for morbidity and mortality. We set out to summarize current knowledge on the acute manifestations of pulmonary vascular disease (PVD) resulting from COVID-19 and prioritize long-term complications that may result in pulmonary hypertension (PH). Recent findings: Acute COVID-19 infection can result in widespread involvement of the pulmonary vasculature, myocardial injury, evidence of persistent lung disease, and venous thromboembolism. Post COVID-19 survivors frequently report ongoing symptoms and may be at risk for the spectrum of PH, including group 1 pulmonary arterial hypertension, group 2 PH due to left heart disease, group 3 PH due to lung disease and/or hypoxia, and group 4 chronic thromboembolic PH. Summary: The impact of COVID-19 on the pulmonary vasculature is central to determining disease severity. Although the long-term PVD manifestations of COVID-19 are currently uncertain, optimizing the care of risk factors for PH and monitoring for the development of PVD will be critical to reducing long-term morbidity and improving the health of survivors.Item Editorial: Pathophysiology and Pathogenic Mechanisms of Pulmonary Vascular Disease(Frontiers Media, 2022-03-18) Zhu, Jinsheng; Chen, Jiwang; Wang, Jian; Desai, Ankit A.; Black, Stephen M.; Tang, Haiyang; Medicine, School of MedicineItem Retinal vessel changes in pulmonary arterial hypertension(Wiley, 2022-02-15) DuPont, Mariana; Lambert, Savanna; Rodriguez‐Martin, Antonio; Hernandez, Okaeri; Lagatuz, Mark; Yilmaz, Taygan; Foderaro, Andrew; Baird, Grayson L.; Parsons‐Wingerter, Patricia; Lahm, Tim; Grant, Maria B.; Ventetuolo, Corey E.; Medicine, School of MedicinePulmonary arterial hypertension (PAH) is classically considered an isolated small vessel vasculopathy of the lungs with peripheral pulmonary vascular obliteration. Systemic manifestations of PAH are increasingly acknowledged, but data remain limited. We hypothesized that retinal vascular changes occur in PAH. PAH subjects underwent retinal fluorescein angiography (FA) and routine disease severity measures were collected from the medical record. FA studies were analyzed using VESsel GENerational Analysis (VESGEN), a noninvasive, user-interactive computer software that assigns branching generation to large and small vessels. FAs from controls (n = 8) and PAH subjects (n = 9) were compared. The tortuosity of retinal arteries was higher in PAH subjects compared to unmatched controls (1.17, 95% confidence interval: [1.14, 1.20] in PAH vs. 1.13, 95% CI: [1.12, 1.14] in controls, p = 0.01). Venous tortuosity was higher and more variable in PAH (1.17, 95% CI: [1.14, 1.20]) compared to controls (1.13, 95% CI: [1.12, 1.15]), p = 0.02. PAH subjects without connective tissue disease had the highest degree of retinal tortuosity relative to controls (arterial, p = 0.01; venous, p = 0.03). Younger PAH subjects had greater retinal arterial tortuosity, which attenuated with age and was not observed in controls. Retinal vascular parameters correlated with some clinical measures of disease in PAH subjects. In conclusion, PAH subjects exhibit higher retinal vascular tortuosity. Retinal vascular changes may track with pulmonary vascular disease progression. Use of FA and VESGEN may facilitate early, noninvasive detection of PAH.Item Statement on pregnancy in pulmonary hypertension from the Pulmonary Vascular Research Institute(University of Chicago Press Journals, 2015-09) Hemnes, Anna R.; Kiely, David G.; Cockrill, Barbara A.; Safdar, Zeenat; Wilson, Victoria J.; Al Hazmi, Manal; Preston, Ioana; MacLean, Mandy R.; Lahm, Tim; Department of Medicine, IU School of MedicinePregnancy outcomes in patients with pulmonary hypertension remain poor despite advanced therapies. Although consensus guidelines recommend against pregnancy in pulmonary hypertension, it may nonetheless occasionally occur. This guideline document sought to discuss the state of knowledge of pregnancy effects on pulmonary vascular disease and to define usual practice in avoidance of pregnancy and pregnancy management. This guideline is based on systematic review of peer-reviewed, published literature identified with MEDLINE. The strength of the literature was graded, and when it was inadequate to support high-level recommendations, consensus-based recommendations were formed according to prespecified criteria. There was no literature that met standards for high-level recommendations for pregnancy management in pulmonary hypertension. We drafted 38 consensus-based recommendations on pregnancy avoidance and management. Further, we identified the current state of knowledge on the effects of sex hormones during pregnancy on the pulmonary vasculature and right heart and suggested areas for future study. There is currently limited evidence-based knowledge about both the basic molecular effects of sex hormones and pregnancy on the pulmonary vasculature and the best practices in contraception and pregnancy management in pulmonary hypertension. We have drafted 38 consensus-based recommendations to guide clinicians in these challenging topics, but further research is needed in this area to define best practices and improve patient outcomes.